scholarly journals Roles of Formin Nodes and Myosin Motor Activity in Mid1p-dependent Contractile-Ring Assembly during Fission Yeast Cytokinesis

2009 ◽  
Vol 20 (24) ◽  
pp. 5195-5210 ◽  
Author(s):  
Valerie C. Coffman ◽  
Aaron H. Nile ◽  
I-Ju Lee ◽  
Huayang Liu ◽  
Jian-Qiu Wu

Two prevailing models have emerged to explain the mechanism of contractile-ring assembly during cytokinesis in the fission yeast Schizosaccharomyces pombe: the spot/leading cable model and the search, capture, pull, and release (SCPR) model. We tested some of the basic assumptions of the two models. Monte Carlo simulations of the SCPR model require that the formin Cdc12p is present in >30 nodes from which actin filaments are nucleated and captured by myosin-II in neighboring nodes. The force produced by myosin motors pulls the nodes together to form a compact contractile ring. Live microscopy of cells expressing Cdc12p fluorescent fusion proteins shows for the first time that Cdc12p localizes to a broad band of 30–50 dynamic nodes, where actin filaments are nucleated in random directions. The proposed progenitor spot, essential for the spot/leading cable model, usually disappears without nucleating actin filaments. α-Actinin ain1 deletion cells form a normal contractile ring through nodes in the absence of the spot. Myosin motor activity is required to condense the nodes into a contractile ring, based on slower or absent node condensation in myo2-E1 and UCS rng3-65 mutants. Taken together, these data provide strong support for the SCPR model of contractile-ring formation in cytokinesis.

2010 ◽  
Vol 21 (6) ◽  
pp. 989-1000 ◽  
Author(s):  
Benjamin C. Stark ◽  
Thomas E. Sladewski ◽  
Luther W. Pollard ◽  
Matthew Lord

Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system.


2012 ◽  
Vol 23 (16) ◽  
pp. 3094-3110 ◽  
Author(s):  
Damien Laporte ◽  
Nikola Ojkic ◽  
Dimitrios Vavylonis ◽  
Jian-Qiu Wu

The actomyosin contractile ring assembles through the condensation of a broad band of nodes that forms at the cell equator in fission yeast cytokinesis. The condensation process depends on actin filaments that interconnect nodes. By mutating or titrating actin cross-linkers α-actinin Ain1 and fimbrin Fim1 in live cells, we reveal that both proteins are involved in node condensation. Ain1 and Fim1 stabilize the actin cytoskeleton and modulate node movement, which prevents nodes and linear structures from aggregating into clumps and allows normal ring formation. Our computer simulations modeling actin filaments as semiflexible polymers reproduce the experimental observations and provide a model of how actin cross-linkers work with other proteins to regulate actin-filament orientations inside actin bundles and organize the actin network. As predicted by the simulations, doubling myosin II Myo2 level rescues the node condensation defects caused by Ain1 overexpression. Taken together, our work supports a cooperative process of ring self-organization driven by the interaction between actin filaments and myosin II, which is progressively stabilized by the cross-linking proteins.


2009 ◽  
Vol 20 (8) ◽  
pp. 2160-2173 ◽  
Author(s):  
Colleen T. Skau ◽  
Erin M. Neidt ◽  
David R. Kovar

Like animal cells, fission yeast divides by assembling actin filaments into a contractile ring. In addition to formin Cdc12p and profilin, the single tropomyosin isoform SpTm is required for contractile ring assembly. Cdc12p nucleates actin filaments and remains processively associated with the elongating barbed end while driving the addition of profilin-actin. SpTm is thought to stabilize mature filaments, but it is not known how SpTm localizes to the contractile ring and whether SpTm plays a direct role in Cdc12p-mediated actin polymerization. Using “bulk” and single actin filament assays, we discovered that Cdc12p can recruit SpTm to actin filaments and that SpTm has diverse effects on Cdc12p-mediated actin assembly. On its own, SpTm inhibits actin filament elongation and depolymerization. However, Cdc12p completely overcomes the combined inhibition of actin nucleation and barbed end elongation by profilin and SpTm. Furthermore, SpTm increases the length of Cdc12p-nucleated actin filaments by enhancing the elongation rate twofold and by allowing them to anneal end to end. In contrast, SpTm ultimately turns off Cdc12p-mediated elongation by “trapping” Cdc12p within annealed filaments or by dissociating Cdc12p from the barbed end. Therefore, SpTm makes multiple contributions to contractile ring assembly during and after actin polymerization.


Author(s):  
Tamara Carla Bidone ◽  
Haosu Tang ◽  
Dimitrios Vavylonis

During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes. The myosin motors exert forces that pull nodes together into a contractile ring. Cross-linking interactions help align actin filaments and nodes into a single bundle. Mutations in the myosin motor domain and changes in the concentration of cross-linkers alpha-actinin and fimbrin alter the morphology of the condensing network, leading to clumps, rings or extended meshworks. How the contractile tension developing during ring formation depends on the interplay between network morphology, myosin motor activity, cross-linking and actin filament turnover remains to be elucidated. We addressed this question using a 3D computational model in which semiflexible actin filaments (represented as beads connected by springs) grow from formins, can be captured by myosin in neighboring nodes, and get cross-linked with one another through an attractive interaction. We identify regimes of tension generation between connected nodes under a wide set of conditions regarding myosin dynamics and strength of cross-linking between actin filaments. We find conditions that maximize circumferential tension, correlate them with network morphology and propose experiments to test these predictions. This work addresses “Morphogenesis of soft and living matter” using computational modeling to simulate cytokinetic ring assembly from the key molecular mechanisms of viscoelastic cross-linked actin networks that include active molecular motors.


2003 ◽  
Vol 161 (5) ◽  
pp. 875-887 ◽  
Author(s):  
David R. Kovar ◽  
Jeffrey R. Kuhn ◽  
Andrea L. Tichy ◽  
Thomas D. Pollard

Cytokinesis in most eukaryotes requires the assembly and contraction of a ring of actin filaments and myosin II. The fission yeast Schizosaccharomyces pombe requires the formin Cdc12p and profilin (Cdc3p) early in the assembly of the contractile ring. The proline-rich formin homology (FH) 1 domain binds profilin, and the FH2 domain binds actin. Expression of a construct consisting of the Cdc12 FH1 and FH2 domains complements a conditional mutant of Cdc12 at the restrictive temperature, but arrests cells at the permissive temperature. Cells overexpressing Cdc12(FH1FH2)p stop growing with excessive actin cables but no contractile rings. Like capping protein, purified Cdc12(FH1FH2)p caps the barbed end of actin filaments, preventing subunit addition and dissociation, inhibits end to end annealing of filaments, and nucleates filaments that grow exclusively from their pointed ends. The maximum yield is one filament pointed end per six formin polypeptides. Profilins that bind both actin and poly-l-proline inhibit nucleation by Cdc12(FH1FH2)p, but polymerization of monomeric actin is faster, because the filaments grow from their barbed ends at the same rate as uncapped filaments. On the other hand, Cdc12(FH1FH2)p blocks annealing even in the presence of profilin. Thus, formins are profilin-gated barbed end capping proteins with the ability to initiate actin filaments from actin monomers bound to profilin. These properties explain why contractile ring assembly requires both formin and profilin and why viability depends on the ability of profilin to bind both actin and poly-l-proline.


2013 ◽  
Vol 203 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Valerie C. Coffman ◽  
Jennifer A. Sees ◽  
David R. Kovar ◽  
Jian-Qiu Wu

Both de novo–assembled actin filaments at the division site and existing filaments recruited by directional cortical transport contribute to contractile ring formation during cytokinesis. However, it is unknown which source is more important. Here, we show that fission yeast formin For3 is responsible for node condensation into clumps in the absence of formin Cdc12. For3 localization at the division site depended on the F-BAR protein Cdc15, and for3 deletion was synthetic lethal with mutations that cause defects in contractile ring formation. For3 became essential in cells expressing N-terminal truncations of Cdc12, which were more active in actin assembly but depended on actin filaments for localization to the division site. In tetrad fluorescence microscopy, double mutants of for3 deletion and cdc12 truncations were severely defective in contractile ring assembly and constriction, although cortical transport of actin filaments was normal. Together, these data indicate that different formins cooperate in cytokinesis and that de novo actin assembly at the division site is predominant for contractile ring formation.


2011 ◽  
Vol 192 (6) ◽  
pp. 1005-1021 ◽  
Author(s):  
Damien Laporte ◽  
Valerie C. Coffman ◽  
I-Ju Lee ◽  
Jian-Qiu Wu

The contractile ring is essential for cytokinesis in most fungal and animal cells. In fission yeast, cytokinesis nodes are precursors of the contractile ring and mark the future cleavage site. However, their assembly and architecture have not been well described. We found that nodes are assembled stoichiometrically in a hierarchical order with two modules linked by the positional marker anillin Mid1. Mid1 first recruits Cdc4 and IQGAP Rng2 to form module I. Rng2 subsequently recruits the myosin-II subunits Myo2 and Rlc1. Mid1 then independently recruits the F-BAR protein Cdc15 to form module II. Mid1, Rng2, Cdc4, and Cdc15 are stable node components that accumulate close to the plasma membrane. Both modules recruit the formin Cdc12 to nucleate actin filaments. Myo2 heads point into the cell interior, where they efficiently capture actin filaments to condense nodes into the contractile ring. Collectively, our work characterizing the assembly and architecture of precursor nodes defines important steps and molecular players for contractile ring assembly.


2018 ◽  
Author(s):  
DS Osorio ◽  
FY Chan ◽  
J Saramago ◽  
J Leite ◽  
AM Silva ◽  
...  

AbstractCytokinesis in animal cells requires the assembly of a contractile actomyosin ring, whose subsequent constriction physically separates the two daughter cells. Non-muscle myosin II (myosin) is essential for cytokinesis, but the role of its motor activity remains poorly defined. Here, we examine cytokinesis in C. elegans one-cell embryos expressing myosin motor mutants generated by genome editing. Motor-dead myosin, which is capable of binding F-actin, does not support cytokinesis, and embryos co-expressing motor-dead and wild-type myosin are delayed in cytokinesis. Partially motor-impaired myosin also delays cytokinesis and renders contractile rings more sensitive to reduced myosin levels. Thus, myosin motor activity, rather than its ability to cross-link actin filaments, drives contractile ring assembly and constriction. We further demonstrate that myosin motor activity is required for long-range cortical actin flows, but that flows per se play a minor role in contractile ring assembly. Our results suggest that flow-independent recruitment of motor-competent myosin to the cell equator is both essential and rate-limiting for cytokinesis.


2008 ◽  
Vol 183 (6) ◽  
pp. 979-988 ◽  
Author(s):  
Yinyi Huang ◽  
Hongyan Yan ◽  
Mohan K. Balasubramanian

Cytokinesis in many eukaryotes depends on the function of an actomyosin contractile ring. The mechanisms regulating assembly and positioning of this ring are not fully understood. The fission yeast Schizosaccharomyces pombe divides using an actomyosin ring and is an attractive organism for the study of cytokinesis. Recent studies in S. pombe (Wu, J.Q., V. Sirotkin, D.R. Kovar, M. Lord, C.C. Beltzner, J.R. Kuhn, and T.D. Pollard. 2006. J. Cell Biol. 174:391–402; Vavylonis, D., J.Q. Wu, S. Hao, B. O'Shaughnessy, and T.D. Pollard. 2008. Science. 319:97–100) have suggested that the assembly of the actomyosin ring is initiated from a series of cortical nodes containing several components of this ring. These studies have proposed that actomyosin interactions bring together the cortical nodes to form a compacted ring structure. In this study, we test this model in cells that are unable to assemble cortical nodes. Although the cortical nodes play a role in the timing of ring assembly, we find that they are dispensable for the assembly of orthogonal actomyosin rings. Thus, a mechanism that is independent of cortical nodes is sufficient for the assembly of normal actomyosin rings.


Sign in / Sign up

Export Citation Format

Share Document