The pathophysiology of sepsis — 2021 update: Part 2, organ dysfunction and assessment

Author(s):  
Judith Jacobi

Abstract Disclaimer In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose This is the second article in a 2-part series discussing the pathophysiology of sepsis. Part 1 of the series reviewed the immunologic response and overlapping pathways of inflammation and coagulation that contribute to the widespread organ dysfunction. In this article (part 2), major organ systems and their dysfunction in sepsis are reviewed, with discussion of scoring systems used to identify patterns and abnormal vital signs and laboratory values associated with sepsis. Summary Sepsis is a dysregulated host response to infection that produces significant morbidity, and patients with shock due to sepsis have circulatory and cellular and metabolic abnormalities that lead to a higher mortality. Cardiovascular dysfunction produces vasodilation, reduced cardiac output and hypotension/shock requiring fluids, vasopressors, and advanced hemodynamic monitoring. Respiratory dysfunction may require mechanical ventilation and attention to volume status. Renal dysfunction is a frequent manifestation of sepsis. Hematologic dysfunction produces low platelets and either elevation or reduction of leucocytes, so consideration of the neutrophil:lymphocyte ratio may be useful. Procoagulant and antifibrinolytic activity leads to coagulation that is stimulated by inflammation. Hepatic dysfunction manifest as elevated bilirubin is often a late finding in sepsis and may cause reductions in production of essential proteins. Neurologic dysfunction may result from local endothelial injury and systemic inflammation through activity of the vagus nerve. Conclusion Timely recognition and team response with efficient use of therapies can improve patient outcome, and pharmacists with a complete understanding of the pathophysiologic mechanisms and treatments are valuable members of that team.

2003 ◽  
Vol 31 (3) ◽  
pp. 267-271 ◽  
Author(s):  
T. Szakmany ◽  
S. Marton ◽  
Z. Molnar

Sepsis and respiratory dysfunction leading to multiple system organ failure remains the leading cause of postoperative morbidity and mortality following major surgical procedures. It has been suggested the oxygen free radicals might play a pivotal role in this process. The aim of this study was to investigate whether short-term infusion of N-acetylcysteine (N-acetylcysteine), a potent antioxidant, administered before and during extensive abdominal surgery, could ameliorate the progression of early postoperative organ dysfunction and improve oxygenation. Out of the 93 patients, 47 received N-acetylcysteine and 46 were given placebo in a randomized, controlled, double-blinded fashion. Patients received N-acetylcysteine (150 mg.kg -1 bolus followed by a continuous infusion of 12 mg.kg -1. h -1 ) or the same volume of placebo (5% dextrose) during surgery. Treatment effect on organ function was assessed by organ dysfunction scores according to physiological parameters of six main organ systems: respiratory, cardiovascular, renal, hepatic, haematological and central nervous system. The scores were obtained on admission, then daily during the first three postoperative days. For statistical analysis Mann-Whitney U and Chi-squared tests were used. There was no significant difference between the two groups in any of the six organ dysfunction parameters, length of intensive care stay, days of mechanical ventilation and mortality. Our results do not support the routine use of N-acetylcysteine as a prophylactic measure during surgery, and reinforce previous evidence which challenges the indication of N-acetylcysteine in the critically ill.


Author(s):  
Dariya Aleksandrovna Gavrilova ◽  
Maria Pavlovna Grushko

The aim of this work was to study peculiarities of mullet morphological organization during early ontogeny. Sample selection was made on board Caspian research and development Institute of Fisheries’ research vessel in period from June to September, 2015 in Russian waters of the Caspian Sea. Larvae aged 10 days could be characterized by heterochrony in the development of major organ systems. Nervous system and sense organs were well developed. The eyeball had all membranes well-differentiated, in the retina all the layers were formed. The olfactory fossae had cells of 3 types: olfactory receptor cells, supporting cells and basal cells. There was observed intensive formation of respiratory, cardiovascular, excretory and digestive systems. The early development of the nervous system and sensory organs of the larvae indicated adaptation of mullet to active life.


2021 ◽  
Author(s):  
Magen E. Francis ◽  
Una Goncin ◽  
Andrea Kroeker ◽  
Cynthia Swan ◽  
Robyn Ralph ◽  
...  

AbstractCOVID-19 (coronavirus disease 2019) caused SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is a disease affecting several organ systems. A model that captures all clinical symptoms of COVID-19 as well as long-haulers disease is needed. We investigated the host responses associated with infection in several major organ systems including the respiratory tract, the heart, and the kidneys after SARS-CoV-2 infection in Syrian hamsters. We found significant increases in inflammatory cytokines (IL-6, IL-1beta, and TNF) and type II interferons whereas type I interferons were inhibited. Examination of extrapulmonary tissue indicated inflammation in the kidney, liver, and heart which also lacked type I interferon upregulation. Histologically, the heart had evidence of mycarditis and microthrombi while the kidney had tubular inflammation. These results give insight into the multiorgan disease experienced by people with COVID-19 and possibly the prolonged disease in people with post-acute sequelae of SARS-CoV-2 (PASC).


2015 ◽  
Author(s):  
Vishal Bansal ◽  
Jay Doucet

The concept of and approach to multiple organ dysfunction syndrome (MODS), also known as progressive systems failure, multiple organ failure, and multiple system organ failure, have evolved over the last decade. Characterized by progressive but potentially reversible tissue damage and dysfunction of two or more organ systems that arise after a significant physiologic insult and its subsequent management, MODS evolves in the wake of a profound disruption of systemic homeostasis. Pre-existing illness, nutritional status, hospital course, and genetic variation all lead to the development of organ dysfunction in patients exposed to these risk factors. The ultimate outcome from MODS is influenced not only by a patient’s genetic and biological predisposition but also by specific management principles practiced by intensivists. This review details the clinical definitions, quantification, prevention, evaluation, support, and outcomes of organ dysfunction. A figure shows the increasing severity of organ dysfunction correlated with increasing intensive care unit mortality, and an algorithm details the approach to MODS. Tables list risk factors and prognosis for MODS, the multiple organ dysfunction (MOD) score, the sequential organ failure assessment (SOFA) score, intensive care unit interventions that reduce mortality or attenuate organ dysfunction along with unproven or disproven ICU interventions, and the temporal evolution of MODS. This review contains 1 figure, 7 tables, and 159 references.


2015 ◽  
Author(s):  
Vishal Bansal ◽  
Jay Doucet

The concept of and approach to multiple organ dysfunction syndrome (MODS), also known as progressive systems failure, multiple organ failure, and multiple system organ failure, have evolved over the last decade. Characterized by progressive but potentially reversible tissue damage and dysfunction of two or more organ systems that arise after a significant physiologic insult and its subsequent management, MODS evolves in the wake of a profound disruption of systemic homeostasis. Pre-existing illness, nutritional status, hospital course, and genetic variation all lead to the development of organ dysfunction in patients exposed to these risk factors. The ultimate outcome from MODS is influenced not only by a patient’s genetic and biological predisposition but also by specific management principles practiced by intensivists. This review details the clinical definitions, quantification, prevention, evaluation, support, and outcomes of organ dysfunction. A figure shows the increasing severity of organ dysfunction correlated with increasing intensive care unit mortality, and an algorithm details the approach to MODS. Tables list risk factors and prognosis for MODS, the multiple organ dysfunction (MOD) score, the sequential organ failure assessment (SOFA) score, intensive care unit interventions that reduce mortality or attenuate organ dysfunction along with unproven or disproven ICU interventions, and the temporal evolution of MODS. This review contains 1 figure, 7 tables, and 159 references.


Critical Care ◽  
2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Elke Schmitt ◽  
Patrick Meybohm ◽  
Eva Herrmann ◽  
Karin Ammersbach ◽  
Raphaela Endres ◽  
...  

Abstract Background The potential harmful effects of particle-contaminated infusions for critically ill adult patients are yet unclear. So far, only significant improved outcome in critically ill children and new-borns was demonstrated when using in-line filters, but for adult patients, evidence is still missing. Methods This single-centre, retrospective controlled cohort study assessed the effect of in-line filtration of intravenous fluids with finer 0.2 or 1.2 μm vs 5.0 μm filters in critically ill adult patients. From a total of n = 3215 adult patients, n = 3012 patients were selected by propensity score matching (adjusting for sex, age, and surgery group) and assigned to either a fine filter cohort (with 0.2/1.2 μm filters, n = 1506, time period from February 2013 to January 2014) or a control filter cohort (with 5.0 μm filters, n = 1506, time period from April 2014 to March 2015). The cohorts were compared regarding the occurrence of severe vasoplegia, organ dysfunctions (lung, kidney, and brain), inflammation, in-hospital complications (myocardial infarction, ischemic stroke, pneumonia, and sepsis), in-hospital mortality, and length of ICU and hospital stay. Results Comparing fine filter vs control filter cohort, respiratory dysfunction (Horowitz index 206 (119–290) vs 191 (104.75–280); P = 0.04), pneumonia (11.4% vs 14.4%; P = 0.02), sepsis (9.6% vs 12.2%; P = 0.03), interleukin-6 (471.5 (258.8–1062.8) ng/l vs 540.5 (284.5–1147.5) ng/l; P = 0.01), and length of ICU (1.2 (0.6–4.9) vs 1.7 (0.8–6.9) days; P <  0.01) and hospital stay (14.0 (9.2–22.2) vs 14.8 (10.0–26.8) days; P = 0.01) were reduced. Rate of severe vasoplegia (21.0% vs 19.6%; P > 0.20) and acute kidney injury (11.8% vs 13.7%; P = 0.11) was not significantly different between the cohorts. Conclusions In-line filtration with finer 0.2 and 1.2 μm filters may be associated with less organ dysfunction and less inflammation in critically ill adult patients. Trial registration The study was registered at ClinicalTrials.gov (number: NCT02281604).


2019 ◽  
Vol 3 (1) ◽  
pp. 2 ◽  
Author(s):  
Kendall Burdick ◽  
Madison Courtney ◽  
Mark Wallace ◽  
Sarah Baum Miller ◽  
Joseph Schlesinger

The intensive care unit (ICU) of a hospital is an environment subjected to ceaseless noise. Patient alarms contribute to the saturated auditory environment and often overwhelm healthcare providers with constant and false alarms. This may lead to alarm fatigue and prevent optimum patient care. In response, a multisensory alarm system developed with consideration for human neuroscience and basic music theory is proposed as a potential solution. The integration of auditory, visual, and other sensory output within an alarm system can be used to convey more meaningful clinical information about patient vital signs in the ICU and operating room to ultimately improve patient outcomes.


CJEM ◽  
2016 ◽  
Vol 19 (1) ◽  
pp. 80-80
Author(s):  
Jason Imperato ◽  
Tyler Mehegan ◽  
Daniel J. Henning ◽  
John Patrick ◽  
Chase Bushey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document