scholarly journals Age-dependent skin tumorigenesis and transgene expression in the Tg.AC (v-Ha-ras) transgenic mouse

2001 ◽  
Vol 22 (4) ◽  
pp. 651-659 ◽  
Author(s):  
Michael StJ. Battalora ◽  
Judson W. Spalding ◽  
Carl J. Szczesniak ◽  
James E. Cape ◽  
Rebecca J. Morris ◽  
...  
2010 ◽  
Vol 38 (4) ◽  
pp. 1001-1005 ◽  
Author(s):  
Kunie Ando ◽  
Karelle Leroy ◽  
Céline Heraud ◽  
Anna Kabova ◽  
Zehra Yilmaz ◽  
...  

We have reported previously a tau transgenic mouse model (Tg30tau) overexpressing human 4R1N double-mutant tau (P301S and G272V) and that develops AD (Alzheimer's disease)-like NFTs (neurofibrillary tangles) in an age-dependent manner. Since murine tau might interfere with the toxic effects of human mutant tau, we set out to analyse the phenotype of our Tg30tau model in the absence of endogenous murine tau with the aim to reproduce more faithfully a model of human tauopathy. By crossing the Tg30tau line with TauKO (tau-knockout) mice, we have obtained a new mouse line called Tg30×TauKO that expresses only exogenous human double-mutant 4R1N tau. Whereas Tg30×TauKO mice express fewer tau proteins compared with Tg30tau, they exhibit augmented sarkosyl-insoluble tau in the brain and an increased number of Gallyas-positive NFTs in the hippocampus. Taken together, exclusion of murine tau causes accelerated tau aggregation during aging of this mutant tau transgenic model.


2002 ◽  
Vol 71 (1) ◽  
pp. 313-322 ◽  
Author(s):  
Fumitaka Oyama ◽  
Naoya Sawamura ◽  
Kimio Kobayashi ◽  
Maho Morishima-Kawashima ◽  
Takashi Kuramochi ◽  
...  

2015 ◽  
Vol 221 (7) ◽  
pp. 3729-3741 ◽  
Author(s):  
Robert Gábriel ◽  
Ferenc Erdélyi ◽  
Gábor Szabó ◽  
J. Josh Lawrence ◽  
Márta Wilhelm

2019 ◽  
Author(s):  
LM Butkovich ◽  
MC Houser ◽  
T Chalermpalanupap ◽  
KA Porter-Stransky ◽  
AF Iannitelli ◽  
...  

AbstractDegeneration of locus coeruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson’s disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly non-motor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine β-hydroxylase promoter. These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal dopamine (DA) metabolism, and age-dependent behaviors reminiscent of non-motor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.Significance statementα-synuclein (asyn) pathology and loss of neurons in the locus coeruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson’s disease (PD). Dysregulated NE neurotransmission is associated with the non-motor symptoms of PD including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in non-motor behaviors without inclusions.


Sign in / Sign up

Export Citation Format

Share Document