scholarly journals Premotor Cortex Provides a Substrate for the Temporal Transformation of Information During the Planning of Gait Modifications

2019 ◽  
Vol 29 (12) ◽  
pp. 4982-5008 ◽  
Author(s):  
Toshi Nakajima ◽  
Nicolas Fortier-Lebel ◽  
Trevor Drew

Abstract We tested the hypothesis that the premotor cortex (PMC) in the cat contributes to the planning and execution of visually guided gait modifications. We analyzed single unit activity from 136 cells localized within layer V of cytoarchitectonic areas 6iffu and that part of 4δ within the ventral bank of the cruciate sulcus while cats walked on a treadmill and stepped over an obstacle that advanced toward them. We found a rich variety of discharge patterns, ranging from limb-independent cells that discharged several steps in front of the obstacle to step-related cells that discharged either during steps over the obstacle or in the steps leading up to that step. We propose that this population of task-related cells within this region of the PMC contributes to the temporal evolution of a planning process that transforms global information of the presence of an obstacle into the precise spatio-temporal limb adjustment required to negotiate that obstacle.

2021 ◽  
Vol 217 ◽  
pp. 103605
Author(s):  
Xianzhi Cao ◽  
Nicolas Flament ◽  
Sanzhong Li ◽  
R. Dietmar Müller

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinlong Shi ◽  
Xing Gao ◽  
Shuyan Xue ◽  
Fengqing Li ◽  
Qifan Nie ◽  
...  

AbstractThe novel coronavirus pneumonia (COVID-19) outbreak that emerged in late 2019 has posed a severe threat to human health and social and economic development, and thus has become a major public health crisis affecting the world. The spread of COVID-19 in population and regions is a typical geographical process, which is worth discussing from the geographical perspective. This paper focuses on Shandong province, which has a high incidence, though the first Chinese confirmed case was reported from Hubei province. Based on the data of reported confirmed cases and the detailed information of cases collected manually, we used text analysis, mathematical statistics and spatial analysis to reveal the demographic characteristics of confirmed cases and the spatio-temporal evolution process of the epidemic, and to explore the comprehensive mechanism of epidemic evolution and prevention and control. The results show that: (1) the incidence rate of COVID-19 in Shandong is 0.76/100,000. The majority of confirmed cases are old and middle-aged people who are infected by the intra-province diffusion, followed by young and middle-aged people who are infected outside the province. (2) Up to February 5, the number of daily confirmed cases shows a trend of “rapid increase before slowing down”, among which, the changes of age and gender are closely related to population migration, epidemic characteristics and intervention measures. (3) Affected by the regional economy and population, the spatial distribution of the confirmed cases is obviously unbalanced, with the cluster pattern of “high–low” and “low–high”. (4) The evolution of the migration pattern, affected by the geographical location of Wuhan and Chinese traditional culture, is dominated by “cross-provincial” and “intra-provincial” direct flow, and generally shows the trend of “southwest → northeast”. Finally, combined with the targeted countermeasures of “source-flow-sink”, the comprehensive mechanism of COVID-19 epidemic evolution and prevention and control in Shandong is revealed. External and internal prevention and control measures are also figured out.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masayuki Kano ◽  
Shin’ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip and can be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault. The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly (but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the following 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3099
Author(s):  
V. Javier Traver ◽  
Judith Zorío ◽  
Luis A. Leiva

Temporal salience considers how visual attention varies over time. Although visual salience has been widely studied from a spatial perspective, its temporal dimension has been mostly ignored, despite arguably being of utmost importance to understand the temporal evolution of attention on dynamic contents. To address this gap, we proposed Glimpse, a novel measure to compute temporal salience based on the observer-spatio-temporal consistency of raw gaze data. The measure is conceptually simple, training free, and provides a semantically meaningful quantification of visual attention over time. As an extension, we explored scoring algorithms to estimate temporal salience from spatial salience maps predicted with existing computational models. However, these approaches generally fall short when compared with our proposed gaze-based measure. Glimpse could serve as the basis for several downstream tasks such as segmentation or summarization of videos. Glimpse’s software and data are publicly available.


2018 ◽  
Vol 10 (12) ◽  
pp. 2046 ◽  
Author(s):  
Haiyun Shi ◽  
Yuhan Cao ◽  
Changming Dong ◽  
Changshui Xia ◽  
Chunhui Li

A river island is a shaped sediment accumulation body with its top above the water’s surface in crooked or branching streams. In this paper, four river islands in Yangzhong City in the lower reaches of the Yangtze River were studied. The spatio-temporal evolution information of the islands was quantitatively extracted using the threshold value method, binarization model, and cluster analysis, based on Thematic Mapper (TM) and Enhanced Thematic Mapper+ (ETM+) images of the Landsat satellite series from 1985 to 2015. The variation mechanism and influencing factors were analyzed using an unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM) hydrodynamic numerical simulation, as well as the water-sediment data measured by hydrological stations. The annual average total area of these islands was 251,224.46 m2 during 1985–2015, and the total area first increased during 1985–2000 and decreased later during 2000–2015. Generally, the total area increased during these 30 years. Taipingzhou island had the largest area and the biggest changing rate, Xishadao island had the smallest area, and Zhongxinsha island had the smallest changing rate. The river islands’ area change was influenced by river runoff, sediment discharge, and precipitation, and sediment discharge proved to be the most significant natural factor in island evolution. River island evolution was also found to be affected by both runoff and oceanic tide. The difference in flow-field caused silting up in the Leigongdao Island and the head of Taipingzhou Island, and a serious reduction in the middle and tail of Taipingzhou Island. The method used in this paper has good applicability to river islands in other rivers around the world.


Sign in / Sign up

Export Citation Format

Share Document