Age-related changes in human Leydig cell status

2020 ◽  
Vol 35 (12) ◽  
pp. 2663-2676
Author(s):  
Valentina Mularoni ◽  
Valentina Esposito ◽  
Sara Di Persio ◽  
Elena Vicini ◽  
Gustavo Spadetta ◽  
...  

Abstract STUDY QUESTION What are the consequences of ageing on human Leydig cell number and hormonal function? SUMMARY ANSWER Leydig cell number significantly decreases in parallel with INSL3 expression and Sertoli cell number in aged men, yet the in vitro Leydig cell androgenic potential does not appear to be compromised by advancing age. WHAT IS KNOWN ALREADY There is extensive evidence that ageing is accompanied by decline in serum testosterone levels, a general involution of testis morphology and reduced spermatogenic function. A few studies have previously addressed single features of the human aged testis phenotype one at a time, but mostly in tissue from patients with prostate cancer. STUDY DESIGN, SIZE, DURATION This comprehensive study examined testis morphology, Leydig cell and Sertoli cell number, steroidogenic enzyme expression, INSL3 expression and androgen secretion by testicular fragments in vitro. The majority of these endpoints were concomitantly evaluated in the same individuals that all displayed complete spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis biopsies were obtained from 15 heart beating organ donors (age range: 19–85 years) and 24 patients (age range: 19–45 years) with complete spermatogenesis. Leydig cells and Sertoli cells were counted following identification by immunohistochemical staining of specific cell markers. Gene expression analysis of INSL3 and steroidogenic enzymes was carried out by qRT-PCR. Secretion of 17-OH-progesterone, dehydroepiandrosterone, androstenedione and testosterone by in vitro cultured testis fragments was measured by LC-MS/MS. All endpoints were analysed in relation to age. MAIN RESULTS AND THE ROLE OF CHANCE Increasing age was negatively associated with Leydig cell number (R = −0.49; P < 0.01) and concomitantly with the Sertoli cell population size (R= −0.55; P < 0.001). A positive correlation (R = 0.57; P < 0.001) between Sertoli cell and Leydig cell numbers was detected at all ages, indicating that somatic cell attrition is a relevant cellular manifestation of human testis status during ageing. INSL3 mRNA expression (R= −0.52; P < 0.05) changed in parallel with Leydig cell number and age. Importantly, steroidogenic capacity of Leydig cells in cultured testis tissue fragments from young and old donors did not differ. Consistently, age did not influence the mRNA expression of steroidogenic enzymes. The described changes in Leydig cell phenotype with ageing are strengthened by the fact that the different age-related effects were mostly evaluated in tissue from the same men. LIMITATIONS, REASONS FOR CAUTION In vitro androgen production analysis could not be correlated with in vivo hormone values of the organ donors. In addition, the number of samples was relatively small and there was scarce information about the concomitant presence of potential confounding variables. WIDER IMPLICATIONS OF THE FINDINGS This study provides a novel insight into the effects of ageing on human Leydig cell status. The correlation between Leydig cell number and Sertoli cell number at any age implies a connection between these two cell types, which may be of particular relevance in understanding male reproductive disorders in the elderly. However aged Leydig cells do not lose their in vitro ability to produce androgens. Our data have implications in the understanding of the physiological role and regulation of intratesticular sex steroid levels during the complex process of ageing in humans. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from Prin 2010 and 2017. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.

Reproduction ◽  
2013 ◽  
Vol 145 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Jingjing Guo ◽  
Hongyu Zhou ◽  
Zhijian Su ◽  
Bingbing Chen ◽  
Guimin Wang ◽  
...  

The objective of this study was to purify cells in the Leydig cell lineage following regeneration after ethane dimethanesulfonate (EDS) treatment and compare their steroidogenic capacity. Regenerated progenitor (RPLCs), immature (RILCs), and adult Leydig cells (RALCs) were isolated from testes 21, 28 and 56 days after EDS treatment respectively. Production rates for androgens including androsterone and 5α-androstane-17β, 3α-diol (DIOL), testosterone and androstenedione were measured in RPLCs, RILCs and RALCs in media after 3-h in vitro culture with 100 ng/ml LH. Steady-state mRNA levels of steroidogenic enzymes and their activities were measured in freshly isolated cells. Compared to adult Leydig cells (ALCs) isolated from normal 90-day-old rat testes, which primarily produce testosterone (69.73%), RPLCs and RILCs primarily produced androsterone (70.21%) and DIOL (69.79%) respectively. Leydig cells isolated from testes 56 days post-EDS showed equivalent capacity of steroidogenesis to ALCs and primarily produced testosterone (72.90%). RPLCs had cholesterol side-chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1 and 17α-hydroxylase but had almost no detectable 17β-hydroxysteroid dehydrogenase 3 and 11β-hydroxysteroid dehydrogenase 1 activities, while RILCs had increased 17β-hydroxysteroid dehydrogenase 3 and 11β-hydroxysteroid dehydrogenase 1 activities. Because RPLCs and RILCs had higher 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase activities they produced mainly 5α-reduced androgens. Real-time PCR confirmed the similar trends for the expressions of these steroidogenic enzymes. In conclusion, the purified RPLCs, RILCs and RALCs are similar to those of their counterparts during rat pubertal development.


1990 ◽  
Vol 127 (1) ◽  
pp. 47-NP ◽  
Author(s):  
D. S. Keeney ◽  
R. L. Sprando ◽  
B. Robaire ◽  
B. R. Zirkin ◽  
L. L. Ewing

ABSTRACT The purpose of this study was to determine whether Leydig cell volume and function could recover fully from long-term LH deprivation upon restoration of endogenous LH secretion, and whether the restoration of LH would elicit a mitogenic response, i.e. stimulate Leydig cell proliferation or affect Leydig cell number per testis. LH secretion was inhibited by treating adult rats with testosterone and oestradiol-filled (TO) silicone elastomer implants (16 weeks), and was restored by removing the implants. Changes in serum concentrations of LH and FSH, LH-stimulated testosterone secretion by testes perfused in vitro, Leydig cell volume and number per testis, average Leydig cell volume and Leydig cell [3H]thymidine incorporation were measured at weekly intervals following implant removal. The TO implants inhibited (P < 0·01) LH secretion, but serum concentrations of FSH were not significantly different (P > 0·10) from control values. After implant removal, serum LH returned to control values within 1 week, whereas serum FSH increased twofold (P < 0·01) and returned to control values at 4 weeks. LH-stimulated in-vitro testosterone secretion was inhibited by more than 99% in TO-implanted rats, but increased (P < 0·01) to 80% of control values by 8 weeks after implant removal. The total volume of Leydig cells per testis and the volume of an average Leydig cell were 14 and 19% of control values respectively, after 16 weeks of TO implantation (P < 0·01), but returned to 83 and 86% of controls (P > 0·10) respectively, by 6 weeks after implant removal. Leydig cell proliferation ([3H]thymidine labelling index) was low (< 0·1%) in both control and TO-implanted rats, increased (P < 0·01) fivefold from 1 to 4 weeks after implant removal and then declined to control values at 6 weeks. The increase in Leydig cell [3H]thymidine incorporation was mimicked by treating TO-implanted rats with exogenous LH, but not FSH. Leydig cells were identified in both the interstitium and the lamina propria of the seminiferous epithelium. The proportion of Leydig cell nuclei in the lamina propria was 30-fold greater (P < 0·01) at 1 and 3 weeks after implant removal (3%) compared with that for control and TO-implanted rats (0·1%). Total Leydig cell number per testis was marginally but not significantly (P = 0·06) decreased in rats treated with TO implants for 16 weeks when compared with controls (18·4±2·2 vs 25·4±1·2 × 106). Three weeks after implant removal, the numbers of Leydig cells per testis were identical (26·8±2·8 × 106) to those in control animals. These results not only demonstrate dramatic morphogenic effects of LH on mature rat Leydig cells, but also suggest that endogenous LH might be mitogenic at least to a subpopulation of Leydig cells. Journal of Endocrinology (1990) 127,47–58


2012 ◽  
Vol 215 (3) ◽  
pp. 403-412 ◽  
Author(s):  
R van der Pas ◽  
L J Hofland ◽  
J Hofland ◽  
A E Taylor ◽  
W Arlt ◽  
...  

The antifungal agent ketoconazole is often used to suppress cortisol production in patients with Cushing's syndrome (CS). However, ketoconazole has serious side effects and is hepatotoxic. Here, the in vitro effects of ketoconazole and fluconazole, which might be less toxic, on human adrenocortical steroidogenesis were compared. The effects on steroidogenesis were examined in primary cultures of nine human adrenocortical tissues and two human adrenocortical carcinoma cell lines. Moreover, the effects on mRNA expression levels of steroidogenic enzymes and cell growth were assessed. Ketoconazole significantly inhibited 11-deoxycortisol (H295R cells; maximum inhibition 99%; EC50 0.73 μM) and cortisol production (HAC15 cells; 81%; EC50 0.26 μM and primary cultures (mean EC50 0.75 μM)). In cultures of normal adrenal cells, ketoconazole increased pregnenolone, progesterone, and deoxycorticosterone levels, while concentrations of 17-hydroxypregnenolone, 17-hydroxyprogesterone, 11-deoxycortisol, DHEA, and androstenedione decreased. Fluconazole also inhibited 11-deoxycortisol production in H295R cells (47%; only at 1 mM) and cortisol production in HAC15 cells (maximum inhibition 55%; EC50 35 μM) and primary cultures (mean EC50 67.7 μM). In the cultures of normal adrenals, fluconazole suppressed corticosterone, 17-hydroxypregnenolone, and androstenedione levels, whereas concentrations of progesterone, deoxycorticosterone, and 11-deoxycortisol increased. Fluconazole (1 mM) slightly increased STAR mRNA expression in both cell lines. Neither compound affected mRNA levels of other steroidogenic enzymes or cell number. In conclusion, by inhibiting 11β-hydroxylase and 17-hydroxylase activity, pharmacological concentrations of fluconazole dose dependently inhibit cortisol production in human adrenocortical cells in vitro. Although fluconazole seems less potent than ketoconazole, it might become an alternative for ketoconazole to control hypercortisolism in CS. Furthermore, patients receiving fluconazole because of mycosis might be at risk for developing adrenocortical insufficiency.


1985 ◽  
Vol 248 (2) ◽  
pp. E176-E181
Author(s):  
M. Benahmed ◽  
J. Reventos ◽  
E. Tabone ◽  
J. M. Saez

To determine the precise role of Sertoli cells in the stimulating effects of follicle stimulating hormone (FSH) on Leydig cell activity, porcine purified Leydig and Sertoli cells were cultured separately or together in a chemically defined medium in the absence or presence of porcine, FSH 50 ng/ml. Leydig cell activity was evaluated using two parameters: human chorionic gonadotropin (hCG) binding sites; and hCG-stimulated cAMP production and testosterone secretion. First, it was found that FSH increases Leydig cell activity in crude Leydig cell preparations (40–60% of Leydig cells), whereas it exerts no effect on purified Leydig cells (greater than 90% of Leydig cells). Second, FSH stimulates the activity of Leydig cells cocultured with Sertoli cells, whereas it remains without effect on purified Leydig cells cultured alone. This stimulating effect of FSH on Leydig cell activity is dependent on the Sertoli cell number in the coculture. These data 1) show that the stimulating effect of FSH on Leydig cell function is mediated by Sertoli cells and 2) support the concept of local control of Leydig cell function originating from Sertoli cells.


Endocrinology ◽  
2007 ◽  
Vol 148 (2) ◽  
pp. 735-742 ◽  
Author(s):  
Haolin Chen ◽  
Lindi Luo ◽  
June Liu ◽  
Barry R. Zirkin

Previous studies suggested that increased Leydig cell cyclooxygenase (COX)2 expression may be involved in the reduced testosterone production that characterizes aged Leydig cells. Our objective herein was to further elucidate the relationships among LH stimulation, Leydig cell COX2 and COX1 expression, aging, and testosterone production. Incubation of Leydig cells from young or aged rats with LH or dibutyryl cAMP resulted in increases in both intracellular COX2 protein expression and testosterone production. COX1 expression did not respond to LH or dibutyryl cAMP. Incubation of adult cells with a protein kinase A inhibitor suppressed the stimulatory effects of LH on COX2 and testosterone production. Short-term incubation of Leydig cells with TGF-α or IL-1β also increased COX2 protein levels; IGF-I had no effect. In vivo, LH also was found to stimulate both COX2 and testosterone, but not COX1. As reported previously, COX2 expression was greater in old than in young cells, and old Leydig cells responded to inhibition of COX2 in vitro with increased testosterone production. However, the effects of the COX2 inhibitors were not restricted to old cells; young Leydig cells also responded to COX2 inhibition with increased testosterone production. This and the observation that the incubation of young or old cells with LH resulted in increased COX2 and testosterone production in both cases suggests that the relationship between COX2 and testosterone production is not unique to aged Leydig cells. Moreover, the close correlation between increases in COX2 and testosterone in LH-stimulated young and aged Leydig cells is difficult to reconcile with the contention that the increased expression of COX2 in aged cells is responsible for age-related suppression of Leydig cell testosterone production.


2019 ◽  
Author(s):  
Erdal Can Alkoclar

BACKGROUND A Formulation consisting of 2 Dioscin and 2 Glucopyranoside Derivatives with Simultaneous GHRH Stimulative and T3 mRNA Expression Enhancimg Features. OBJECTIVE Anti Aging METHODS GH/T3 Optimization RESULTS Approved in Vitro CONCLUSIONS Endogenous GH and T3 Optimization is the an efficient method for combating age related Senility and Fatigue Symptoms


1985 ◽  
Vol 132 (2) ◽  
pp. 729-734 ◽  
Author(s):  
M. Benahmed ◽  
C. Grenot ◽  
E. Tabone ◽  
P. Sanchez ◽  
A.M. Morera

2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


2003 ◽  
Vol 77 (5) ◽  
pp. 3297-3300 ◽  
Author(s):  
Ronan Le Goffic ◽  
Thomas Mouchel ◽  
Annick Ruffault ◽  
Jean-Jacques Patard ◽  
Bernard Jégou ◽  
...  

ABSTRACT Mumps virus is responsible for sterility. Here, we show that the mumps virus infects Leydig cells in vitro and totally inhibits testosterone secretion and that ribavirin in mumps virus-infected Leydig cell cultures completely restores testosterone production. Moreover, we show that gamma interferon-induced protein 10 (IP-10) is highly expressed by mumps virus-infected Leydig cells and that ribavirin does not block IP-10 production.


2016 ◽  
Vol 28 (2) ◽  
pp. 137
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
D. Hermann ◽  
...  

Conventional “Dolly”-based cloned (CNT) embryos maintain zona pellucida and can be transferred early in development. Handmade cloned (HMC) embryos are zona free and are cultured to later stages for transfer. We have shown differences between HMC and CNT embryos (Rep. Fert. Dev. 26, 123), and both in vitro culture and cloning method (NT) are associated with alterations in histone acetylation. More studies are needed to clarify whether CNT and HMC embryos differ in epigenetic profiles due to NT method or culture condition. Here we investigated histone acetylation profile of NT embryos produced by CNT or HMC with or without 5 to 6 days in vitro culture, emphasising quality and gene expression in resulting embryos. Both NT methods were performed on Day 0 (D0) with same oocyte batch, donor cells, and culture medium (CNT in group, HMC in well of well). On D0, 5, and 6 after CNT (Clon. Stem Cells 10, 355) or HMC (Zygote 20, 61), all developed embryos of all morphological qualities were collected for immunostaining of H3K18ac, and on D0 and 6 for mRNA expression of the genes KAT2A/2B, EP300, HDAC1/2, DNMT1o/s, and GAPDH. Embryo quality was evaluated normal (clear inner cell mass, high cell number, no fragments) or bad (no clear inner cell mass, low cell number, fragments). Cell numbers per blastocyst were counted on D5 and 6. Differences in cell number and H3K18ac level between different groups and days were analysed by ANOVA; gene expression data were analysed by GLM (SAS version 9.3, SAS Institute Inc., Cary, NC, USA). Embryo development rates of both NT methods were reported previously (Rep. Fert. Dev. 26, 123). On D5 and 6, all HMC embryos were evaluated as normal, but the CNT group contained both normal and bad embryos. Regarding cell numbers (Table 1), on D5 there was no difference between normal CNT and HMC embryos, but numbers were lower in CNT bad embryos. On D6 the blastocyst cell number was lower in both normal and bad CNT embryos compared with HMC. Regarding H3K18ac levels (Table 1), no differences were found on D5 between normal CNT and HMC embryos, but on D6 both CNT normal and bad embryos had higher H3K18ac level compared with HMC. On D0, no difference was found in mRNA expression of all 8 genes. On D6, KAT2A expression was slight increased (1.8-fold) in CNT compared with HMC embryos (P < 0.05). In conclusion, no differences were found between CNT and HMC embryos after completed NT procedure (D0) or after 5 days in vitro culture. However, differences in quality (cell number and H3K18ac) and gene expression between the 2 NT methods were observed when blastocyst expansion was initiated (D6). Thus, the 2 NT methods seem to produce embryos of similar quality, which is maintained over 5 days in vitro culture, but thereafter gene expression and histone acetylation are more active in CNT embryos. Table 1.Cell number and H3K18ac level1


Sign in / Sign up

Export Citation Format

Share Document