scholarly journals Comparison of cell types in the rat Leydig cell lineage after ethane dimethanesulfonate treatment

Reproduction ◽  
2013 ◽  
Vol 145 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Jingjing Guo ◽  
Hongyu Zhou ◽  
Zhijian Su ◽  
Bingbing Chen ◽  
Guimin Wang ◽  
...  

The objective of this study was to purify cells in the Leydig cell lineage following regeneration after ethane dimethanesulfonate (EDS) treatment and compare their steroidogenic capacity. Regenerated progenitor (RPLCs), immature (RILCs), and adult Leydig cells (RALCs) were isolated from testes 21, 28 and 56 days after EDS treatment respectively. Production rates for androgens including androsterone and 5α-androstane-17β, 3α-diol (DIOL), testosterone and androstenedione were measured in RPLCs, RILCs and RALCs in media after 3-h in vitro culture with 100 ng/ml LH. Steady-state mRNA levels of steroidogenic enzymes and their activities were measured in freshly isolated cells. Compared to adult Leydig cells (ALCs) isolated from normal 90-day-old rat testes, which primarily produce testosterone (69.73%), RPLCs and RILCs primarily produced androsterone (70.21%) and DIOL (69.79%) respectively. Leydig cells isolated from testes 56 days post-EDS showed equivalent capacity of steroidogenesis to ALCs and primarily produced testosterone (72.90%). RPLCs had cholesterol side-chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1 and 17α-hydroxylase but had almost no detectable 17β-hydroxysteroid dehydrogenase 3 and 11β-hydroxysteroid dehydrogenase 1 activities, while RILCs had increased 17β-hydroxysteroid dehydrogenase 3 and 11β-hydroxysteroid dehydrogenase 1 activities. Because RPLCs and RILCs had higher 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase activities they produced mainly 5α-reduced androgens. Real-time PCR confirmed the similar trends for the expressions of these steroidogenic enzymes. In conclusion, the purified RPLCs, RILCs and RALCs are similar to those of their counterparts during rat pubertal development.

2020 ◽  
Vol 35 (12) ◽  
pp. 2663-2676
Author(s):  
Valentina Mularoni ◽  
Valentina Esposito ◽  
Sara Di Persio ◽  
Elena Vicini ◽  
Gustavo Spadetta ◽  
...  

Abstract STUDY QUESTION What are the consequences of ageing on human Leydig cell number and hormonal function? SUMMARY ANSWER Leydig cell number significantly decreases in parallel with INSL3 expression and Sertoli cell number in aged men, yet the in vitro Leydig cell androgenic potential does not appear to be compromised by advancing age. WHAT IS KNOWN ALREADY There is extensive evidence that ageing is accompanied by decline in serum testosterone levels, a general involution of testis morphology and reduced spermatogenic function. A few studies have previously addressed single features of the human aged testis phenotype one at a time, but mostly in tissue from patients with prostate cancer. STUDY DESIGN, SIZE, DURATION This comprehensive study examined testis morphology, Leydig cell and Sertoli cell number, steroidogenic enzyme expression, INSL3 expression and androgen secretion by testicular fragments in vitro. The majority of these endpoints were concomitantly evaluated in the same individuals that all displayed complete spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis biopsies were obtained from 15 heart beating organ donors (age range: 19–85 years) and 24 patients (age range: 19–45 years) with complete spermatogenesis. Leydig cells and Sertoli cells were counted following identification by immunohistochemical staining of specific cell markers. Gene expression analysis of INSL3 and steroidogenic enzymes was carried out by qRT-PCR. Secretion of 17-OH-progesterone, dehydroepiandrosterone, androstenedione and testosterone by in vitro cultured testis fragments was measured by LC-MS/MS. All endpoints were analysed in relation to age. MAIN RESULTS AND THE ROLE OF CHANCE Increasing age was negatively associated with Leydig cell number (R = −0.49; P < 0.01) and concomitantly with the Sertoli cell population size (R= −0.55; P < 0.001). A positive correlation (R = 0.57; P < 0.001) between Sertoli cell and Leydig cell numbers was detected at all ages, indicating that somatic cell attrition is a relevant cellular manifestation of human testis status during ageing. INSL3 mRNA expression (R= −0.52; P < 0.05) changed in parallel with Leydig cell number and age. Importantly, steroidogenic capacity of Leydig cells in cultured testis tissue fragments from young and old donors did not differ. Consistently, age did not influence the mRNA expression of steroidogenic enzymes. The described changes in Leydig cell phenotype with ageing are strengthened by the fact that the different age-related effects were mostly evaluated in tissue from the same men. LIMITATIONS, REASONS FOR CAUTION In vitro androgen production analysis could not be correlated with in vivo hormone values of the organ donors. In addition, the number of samples was relatively small and there was scarce information about the concomitant presence of potential confounding variables. WIDER IMPLICATIONS OF THE FINDINGS This study provides a novel insight into the effects of ageing on human Leydig cell status. The correlation between Leydig cell number and Sertoli cell number at any age implies a connection between these two cell types, which may be of particular relevance in understanding male reproductive disorders in the elderly. However aged Leydig cells do not lose their in vitro ability to produce androgens. Our data have implications in the understanding of the physiological role and regulation of intratesticular sex steroid levels during the complex process of ageing in humans. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from Prin 2010 and 2017. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Emmanuelle Martinot ◽  
Derek Boerboom

Abstract Background First identified as a regulator of neuronal axon guidance, Slit/Robo signaling has since been implicated in additional physiologic and pathologic processes, such as angiogenesis, organogenesis and cancer progression. However, its roles in the regulation of testis function have been little explored. Methods Immunohistochemistry and RT-qPCR analyses were performed to detect the expression of Slit/Robo signaling effectors in the adult mouse testis. To identify the roles and mechanisms of Slit/Robo signaling in the regulation of steroidogenesis, RT-qPCR, immunoblotting and hormone measurements were carried out using Leydig cells (primary cultures and the MA10 cell line) treated with exogenous SLIT ligands, and testes from Robo1-null mice. Results Slit1, -2 and -3 and Robo1 and -2 expression was detected in the adult mouse testis, particularly in Leydig cells. In vitro treatment of Leydig cells with exogenous SLIT ligands led to a decrease in the expression of the steroidogenic genes Star, Cyp11a1, and Cyp17a1. SLIT2 treatment decreased the phosphorylation of the key steroidogenic gene regulator CREB, possibly in part by suppressing AKT activity. Furthermore, SLIT2 treatment reduced the responsiveness of MA10 cells to luteinizing hormone by decreasing the expression of Lhcgr. Consistent with these in vitro results, an increase in testicular Star mRNA levels and intra-testicular testosterone concentrations were found in Robo1-null mice. Finally, we showed that the expression of the Slit and Robo genes in Leydig cells is enhanced by testosterone treatment in vitro, by an AR-independent mechanism. Conclusion Taken together, these results suggest that Slit/Robo signaling represents a novel mechanism that regulates Leydig cell steroidogenesis. It may act in an autocrine/paracrine manner to mediate negative feedback by testosterone on its own synthesis.


2007 ◽  
Vol 192 (2) ◽  
pp. 325-338 ◽  
Author(s):  
Palaniappan Murugesan ◽  
Muthusamy Balaganesh ◽  
Karundevi Balasubramanian ◽  
Jagadeesan Arunakaran

Polychlorinated biphenyls (PCBs) are ubiquitous and persistent environmental contaminants that disturb normal endocrine functions, including gonadal functions in humans and mammals. In the present study, we examined the direct effects of PCB on rat Leydig cells in vitro. Adult Leydig cells were purified by Percoll gradient centrifugation method and the purity of Leydig cells was also determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining method. Purified Leydig cells were exposed to different concentrations (10− 10–10− 7 M) of PCB (Aroclor 1254) for 24 h under basal and LH-stimulated conditions. After the experimental period, cultured media were collected and used for the assay of testosterone and estradiol. The treated cells were used for the quantification of cell-surface LH receptors and activities of steroidogenic enzymes, such as cytochrome P450 side-chain cleavage enzyme (P450scc), 3β-HSD, and 17β-hydroxysteroid dehydrogenase (17β-HSD). Leydig cellular enzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, γ-glutamyl transpeptidase, glutathione-S-transferase, and nonenzymatic antioxidants, such as vitamins C and E, were assayed. Lipid peroxidation (LPO) and reactive oxygen species (ROS) were also estimated in Leydig cells. In addition, total RNA was isolated from control and Aroclor 1254-exposed Leydig cells to monitor the steady-state mRNA levels by reverse transcription(RT)-PCR for steroidogenic acute-regulatory (StAR) protein, cytochrome P450scc, 3β-HSD, and 17β-HSD. Our results indicated that Aroclor 1254 (10− 9, 10− 8, and 10− 7 M) treatments significantly inhibit basal and LH-stimulated testosterone and estradiol production. In addition, the activities of steroidogenic enzymes, enzymatic and nonenzymatic antioxidants were significantly diminished in a dose-dependent manner. However, LPO and ROS were elevated in a dose-dependent manner under basal and LH-stimulated conditions. RT-PCR analysis of StAR mRNA level showed a decrease only in 10− 7 M dose of Aroclor 1254 treatment, while cytochrome P450scc, 3β-HSD, and 17β-HSD mRNAs were drastically decreased in both 10− 8 and 10− 7 M Aroclor 1254 treatment. These findings suggest that PCBs can act directly on Leydig cells to diminish testosterone production by inhibiting gene expression of steroidogenic enzymes and antioxidant system.


2016 ◽  
Vol 113 (10) ◽  
pp. 2666-2671 ◽  
Author(s):  
Xiaoheng Li ◽  
Zhao Wang ◽  
Zhenming Jiang ◽  
Jingjing Guo ◽  
Yuxi Zhang ◽  
...  

Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.


Endocrinology ◽  
2021 ◽  
Author(s):  
Pierre-Olivier Hébert-Mercier ◽  
Francis Bergeron ◽  
Nicholas M Robert ◽  
Samir Mehanovic ◽  
Kenley Joule Pierre ◽  
...  

Abstract Leydig cells produce androgens that are essential for male sex differentiation and reproductive function. Leydig cell function is regulated by several hormones and signaling molecules, including growth hormone (GH). Although GH is known to upregulate Star gene expression in Leydig cells, its molecular mechanism of action remains unknown. The STAT5B transcription factor is a downstream effector of GH signaling in other systems. While STAT5B is present in both primary and Leydig cell lines, its function in these cells has yet to be ascertained. Here we report that treatment of MA-10 Leydig cells with GH or overexpression of STAT5B induces Star mRNA levels and increases steroid hormone output. The mouse Star promoter contains a consensus STAT5B element (TTCnnnGAA) at -756 bp to which STAT5B binds in vitro (EMSA and supershift) and in vivo (ChIP) in a GH-induced manner. In functional promoter assays, STAT5B was found to activate a -980 bp mouse Star reporter. Mutating the -756 bp element prevented STAT5B binding but did not abrogate STAT5B-responsiveness. STAT5B was found to functionally cooperate with DNA-bound cJUN. The STAT5B/cJUN cooperation was only observed in Leydig cells and not in Sertoli or fibroblast cells, indicating that additional Leydig cell-enriched transcription factors are required. The STAT5B/cJUN cooperation was lost only when both STAT5B and cJUN elements were mutated. In addition to identifying the Star gene as a novel target for STAT5B in Leydig cells, our data provide important new insights into the mechanism of GH and STAT5B action in the regulation of Leydig cell function.


Reproduction ◽  
2006 ◽  
Vol 132 (4) ◽  
pp. 607-616 ◽  
Author(s):  
Caroline N Kahiri ◽  
M Wahid Khalil ◽  
Francis Tekpetey ◽  
Gerald M Kidder

Connexin43 (Cx43) is the most abundantly expressed member of the connexin (gap junction protein) family and the only one so far identified in mouse Leydig cell gap junctions. Mice lacking Cx43 were used to investigate its role in testicular androgen production and regulation. Testes from term fetuses were grafted under the kidney capsules of castrated adult males. After 3 weeks, serum from host mice was analyzed for androgens. In order to test their response to stimulation, the grafted testes were incubated in vitro with varying concentrations of LH and their androgen end products analyzed. Incubation with radiolabeled progesterone was followed by high performance liquid chromatography to quantify the androgen-intermediate metabolites. Radiolabeled testosterone in the presence of NADPH was used to determine the activity of testosterone-metabolizing enzymes 17β-hydroxysteroid dehydrogenase (17βHSD), 5α-reductase (5αR), and 3α-hydroxysteroid dehydrogenase (3α HSD). Serum androgen levels did not differ between hosts carrying wild-type versus null mutant grafts although Cx43-deficient testes had more 17βHSD and 5αR activity than wild-type controls. Furthermore, the genotype of grafted testes did not influence LH-stimulated androgen production in vitro. These results indicate that the steroidogenic function of Leydig cells is not compromised by the absence of Cx43, perhaps because other gap junction proteins are present. Dye transfer experiments demonstrated that Cx43-deficient Leydig cells retain intercellular coupling, indicating that Cx43 is not the only protein contributing to their gap junctions. Thus, despite their prominence in Leydig cells, Cx43 gap junctions are not essential for androgen production.


2011 ◽  
Vol 25 (7) ◽  
pp. 1211-1222 ◽  
Author(s):  
Soichi Yamashita ◽  
Ping Tai ◽  
Jean Charron ◽  
CheMyong Ko ◽  
Mario Ascoli

2015 ◽  
Vol 45 (4) ◽  
pp. 704-710 ◽  
Author(s):  
Melânia Lazzari Rigo ◽  
Andressa Minussi Pereira Dau ◽  
Werner Giehl Glanzner ◽  
Manoel Martins ◽  
Renato Zanella ◽  
...  

The main objective of this study was to detect the steroidogenic effects of Ang II in bovine theca cells in vitro. Bovine theca cells were obtained from follicles (larger than 10mm of diameter) collected from a local abattoir and submitted to different treatments in a sequence of experiments. In experiment 1, CYP17A1 mRNA profile was evaluated in LH- (10ng ml-1) and Ang II-treated (0.1µM) theca cells. In experiment 2, a dose-response effect of Ang II (0.001; 0.1 e 10µM) plus insulin (100ng ml-1) and LH (100ng ml-1) was evaluated on steroidogenesis of bovine theca cells. Experiment 3 explored the effects of saralasin (an antagonist of Ang II receptors) on steroid production and steroidogenic enzymes regulation in theca cells. After 24 hours, culture media from experiments 2 and 3 was collected to evaluate testosterone and androstenedione levels by High-Performance Liquid Chromatography. In parallel, mRNA levels of key steroidogenic enzymes (HSD3B2, CYP11A1, CYP17A1) and STAR were assessed by RT-PCR. There was no difference in testosterone and androstenedione production between treated and controls groups, as well as in mRNA levels of the evaluated genes. In conclusion, the results suggest that Ang II does not regulate steroidogenesis in bovine theca cells


2008 ◽  
Vol 27 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Suel-Kee Kim ◽  
Jong-Hoon Kim ◽  
Jung Ho Han ◽  
Yong-Dal Yoon

Tributyltin (TBT) is known to disrupt the development of reproductive organs, thereby reducing fertility. The aim of this study was to evaluate the acute toxicity of TBT on the testicular development and steroid hormone production. Immature (3-week-old) male mice were given a single administration of 25, 50, or 100 mg/kg of TBT by oral gavage. Lumen formation in seminiferous tubule was remarkably delayed, and the number of apoptotic germ cells found inside the tubules was increased in the TBT-exposed animals, whereas no apoptotic signal was observed in interstitial Leydig cells. Reduced serum testosterone concentration and down-regulated expressions of the mRNAs for cholesterol side-chain cleavage enzyme (P450scc), 17α-hydroxylase/C17–20 lyase (P45017α), 3β-hydroxysteroid-dehydrogenase (3β-HSD), and 17β-hydroxysteroid-dehydrogenase (17β-HSD) were also observed after TBT exposure. Altogether, these findings demonstrate that exposure to TBT is associated with induced apoptosis of testicular germ cells and inhibition of steroidogenesis by reduction in the expression of steroidogenic enzymes in interstitial Leydig cells. These adverse effects of TBT would cause serious defects in testicular development and function.


2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


Sign in / Sign up

Export Citation Format

Share Document