scholarly journals Stable Pair Invariants of Local Calabi–Yau 4-folds

Author(s):  
Yalong Cao ◽  
Martijn Kool ◽  
Sergej Monavari

Abstract In 2008, Klemm–Pandharipande defined Gopakumar–Vafa type invariants of a Calabi–Yau 4-folds $X$ using Gromov–Witten theory. Recently, Cao–Maulik–Toda proposed a conjectural description of these invariants in terms of stable pair theory. When $X$ is the total space of the sum of two line bundles over a surface $S$, and all stable pairs are scheme theoretically supported on the zero section, we express stable pair invariants in terms of intersection numbers on Hilbert schemes of points on $S$. As an application, we obtain new verifications of the Cao–Maulik–Toda conjectures for low-degree curve classes and find connections to Carlsson–Okounkov numbers. Some of our verifications involve genus zero Gopakumar–Vafa type invariants recently determined in the context of the log-local principle by Bousseau–Brini–van Garrel. Finally, using the vertex formalism, we provide a few more verifications of the Cao–Maulik–Toda conjectures when thickened curves contribute and also for the case of local $\mathbb{P}^3$.

2017 ◽  
Vol 21 (3) ◽  
pp. 531-542 ◽  
Author(s):  
Amin Gholampour ◽  
Artan Sheshmani

Author(s):  
Jan Arthur Christophersen ◽  
Nathan Ilten

AbstractFor fixed degree


1990 ◽  
Vol 68 (1) ◽  
pp. 337-341 ◽  
Author(s):  
Fabrizio Catanese ◽  
Lothar Gœttsche
Keyword(s):  

Author(s):  
Luca Schaffler

AbstractWe describe a compactification by stable pairs (also known as KSBA compactification) of the 4-dimensional family of Enriques surfaces which arise as the $${\mathbb {Z}}_2^2$$ Z 2 2 -covers of the blow up of $${\mathbb {P}}^2$$ P 2 at three general points branched along a configuration of three pairs of lines. Up to a finite group action, we show that this compactification is isomorphic to the toric variety associated to the secondary polytope of the unit cube. We relate the KSBA compactification considered to the Baily–Borel compactification of the same family of Enriques surfaces. Part of the KSBA boundary has a toroidal behavior, another part is isomorphic to the Baily–Borel compactification, and what remains is a mixture of these two. We relate the stable pair compactification studied here with Looijenga’s semitoric compactifications.


Author(s):  
Simone Marchesi ◽  
Jean Vallès

Abstract Over the past forty years many papers have studied logarithmic sheaves associated to reduced divisors, in particular logarithmic bundles associated to plane curves. An interesting family of these curves are the so-called free ones for which the associated logarithmic sheaf is the direct sum of two line bundles. Terao conjectured thirty years ago that when a curve is a finite set of distinct lines (i.e. a line arrangement) its freeness depends solely on its combinatorics, but this has only been proved for sets of up to 12 lines. In looking for a counter-example to Terao’s conjecture, the nearly free curves introduced by Dimca and Sticlaru arise naturally. We prove here that the logarithmic bundle associated to a nearly free curve possesses a minimal non-zero section that vanishes on one single point, P say, called the jumping point, and that this characterises the bundle. We then give a precise description of the behaviour of P. Based on detailed examples we then show that the position of P relative to its corresponding nearly free arrangement of lines may or may not be a combinatorial invariant, depending on the chosen combinatorics.


2019 ◽  
Vol 2020 (20) ◽  
pp. 7037-7072
Author(s):  
Pedro Acosta ◽  
Mark Shoemaker

Abstract We investigate the effect of a general toric wall crossing on genus zero Gromov–Witten theory. Given two complete toric orbifolds $X_{+}$ and $X_{-}$ related by wall crossing under variation of geometric invariant theory quotients, we prove that their respective $I$-functions are related by linear transformation and asymptotic expansion. We use this comparison to deduce a similar result for birational complete intersections in $X_{+}$ and $X_{-}$. This extends the work of the previous authors in [2] to the case of complete intersections in toric varieties and generalizes some of the results of Coates–Iritani–Jiang [15] on the crepant transformation conjecture to the setting of non-zero discrepancy.


Sign in / Sign up

Export Citation Format

Share Document