stable pairs
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Franco Rota

For a smooth projective variety [Formula: see text], we study analogs of Quot schemes using hearts of non-standard [Formula: see text]-structures of [Formula: see text]. The technical framework uses families of [Formula: see text]-structures as studied in A. Bayer, M. Lahoz, E. Macrì, H. Nuer, A. Perry and P. Stellari, Stability conditions in families, preprint (2019), arXiv:1902.08184. We provide several examples and suggest possible directions of further investigation, as we reinterpret moduli spaces of stable pairs, in the sense of M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117(2) (1994) 317–353; D. Huybrechts and M. Lehn, Stable pairs on curves and surfaces, J. Algebraic Geom. 4(1) (1995) 67–104, as instances of Quot schemes.


Author(s):  
Luca Schaffler

AbstractWe describe a compactification by stable pairs (also known as KSBA compactification) of the 4-dimensional family of Enriques surfaces which arise as the $${\mathbb {Z}}_2^2$$ Z 2 2 -covers of the blow up of $${\mathbb {P}}^2$$ P 2 at three general points branched along a configuration of three pairs of lines. Up to a finite group action, we show that this compactification is isomorphic to the toric variety associated to the secondary polytope of the unit cube. We relate the KSBA compactification considered to the Baily–Borel compactification of the same family of Enriques surfaces. Part of the KSBA boundary has a toroidal behavior, another part is isomorphic to the Baily–Borel compactification, and what remains is a mixture of these two. We relate the stable pair compactification studied here with Looijenga’s semitoric compactifications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana F. Costa ◽  
Marta A. Moita ◽  
Cristina Márquez

AbstractSocial hierarchy is a potent modulator of behavior, that is typically established through overt agonistic interactions between individuals in the group. Once established, social ranks are maintained through subtler interactions allowing the redirection of energy away from agonistic interactions towards other needs. The available tasks for assessing social rank in rats allow the study of the mechanisms by which social hierarches are formed in early phases but fail to assess the maintenance of established hierarchies between stable pairs of animals, which might rely on distinct neurobiological mechanisms. Here we present and validate a novel trial-based dominancy assay, the modified Food Competition test, where established social hierarchies can be identified in the home cage of non-food deprived pairs of male rats. In this task, we introduce a small conflict in the home cage, where access to a new feeder containing palatable pellets can only be gained by one animal at a time. We found that this subtle conflict triggered asymmetric social interactions and resulted in higher consumption of food by one of the animals in the pair, which reliably predicted hierarchy in other tests. Our findings reveal stable dominance status in pair-housed rats and provide a novel tool for the evaluation of established social hierarchies, the modified Food Competition test, that is robust and easy to implement.


Author(s):  
Yalong Cao ◽  
Davesh Maulik ◽  
Yukinobu Toda
Keyword(s):  

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Dori Bejleri ◽  
Giovanni Inchiostro
Keyword(s):  

Author(s):  
Yalong Cao ◽  
Martijn Kool ◽  
Sergej Monavari

Abstract In 2008, Klemm–Pandharipande defined Gopakumar–Vafa type invariants of a Calabi–Yau 4-folds $X$ using Gromov–Witten theory. Recently, Cao–Maulik–Toda proposed a conjectural description of these invariants in terms of stable pair theory. When $X$ is the total space of the sum of two line bundles over a surface $S$, and all stable pairs are scheme theoretically supported on the zero section, we express stable pair invariants in terms of intersection numbers on Hilbert schemes of points on $S$. As an application, we obtain new verifications of the Cao–Maulik–Toda conjectures for low-degree curve classes and find connections to Carlsson–Okounkov numbers. Some of our verifications involve genus zero Gopakumar–Vafa type invariants recently determined in the context of the log-local principle by Bousseau–Brini–van Garrel. Finally, using the vertex formalism, we provide a few more verifications of the Cao–Maulik–Toda conjectures when thickened curves contribute and also for the case of local $\mathbb{P}^3$.


2021 ◽  
Vol 64 (1) ◽  
pp. 99-127
Author(s):  
Han-Bom Moon ◽  
Luca Schaffler

We describe a compactification by KSBA stable pairs of the five-dimensional moduli space of K3 surfaces with a purely non-symplectic automorphism of order four and $U(2)\oplus D_4^{\oplus 2}$ lattice polarization. These K3 surfaces can be realized as the minimal resolution of the double cover of $\mathbb {P}^{1}\times \mathbb {P}^{1}$ branched along a specific $(4,\,4)$ curve. We show that, up to a finite group action, this stable pairs compactification is isomorphic to Kirwan's partial desingularization of the GIT quotient $(\mathbb {P}^{1})^{8}{/\!/}\mathrm {SL}_2$ with the symmetric linearization.


Author(s):  
Alexandre Ern ◽  
Jean-Luc Guermond

Author(s):  
Alexandre Ern ◽  
Jean-Luc Guermond

2021 ◽  
Vol 9 ◽  
Author(s):  
Henry Liu

Abstract We prove an equivalence between the Bryan-Steinberg theory of $\pi $ -stable pairs on $Y = \mathcal {A}_{m-1} \times \mathbb {C}$ and the theory of quasimaps to $X = \text{Hilb}(\mathcal {A}_{m-1})$ , in the form of an equality of K-theoretic equivariant vertices. In particular, the combinatorics of both vertices are described explicitly via box counting. Then we apply the equivalence to study the implications for sheaf-counting theories on Y arising from 3D mirror symmetry for quasimaps to X, including the Donaldson-Thomas crepant resolution conjecture.


Sign in / Sign up

Export Citation Format

Share Document