AbstractInspired by quaternion algebra and the idea of fractional-order transformation, we propose a new set of quaternion fractional-order generalized Laguerre orthogonal moments (QFr-GLMs) based on fractional-order generalized Laguerre polynomials. Firstly, the proposed QFr-GLMs are directly constructed in Cartesian coordinate space, avoiding the need for conversion between Cartesian and polar coordinates; therefore, they are better image descriptors than circularly orthogonal moments constructed in polar coordinates. Moreover, unlike the latest Zernike moments based on quaternion and fractional-order transformations, which extract only the global features from color images, our proposed QFr-GLMs can extract both the global and local color features. This paper also derives a new set of invariant color-image descriptors by QFr-GLMs, enabling geometric-invariant pattern recognition in color images. Finally, the performances of our proposed QFr-GLMs and moment invariants were evaluated in simulation experiments of correlated color images. Both theoretical analysis and experimental results demonstrate the value of the proposed QFr-GLMs and their geometric invariants in the representation and recognition of color images.