scholarly journals Golod–Shafarevich-Type Theorems and Potential Algebras

2018 ◽  
Vol 2019 (15) ◽  
pp. 4822-4844 ◽  
Author(s):  
Natalia Iyudu ◽  
Agata Smoktunowicz

Abstract Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Gröbner basis theory and generalized Golod–Shafarevich-type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Gröbner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than 8. This answers a question of Wemyss [21], related to the geometric argument of Toda [17]. We derive from the improved version of the Golod–Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove that potential algebra for any homogeneous potential of degree $n\geqslant 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class $\mathcal {P}_{n}$ of potential algebras with homogeneous potential of degree $n+1\geqslant 4$, the minimal Hilbert series is $H_{n}=\frac {1}{1-2t+2t^{n}-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but nonlinear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar–Vafa invariants.

2012 ◽  
Vol 2013 (682) ◽  
pp. 1-48
Author(s):  
Lidia Angeleri Hügel ◽  
Javier Sánchez

Abstract. We give a complete classification of the infinite dimensional tilting modules over a tame hereditary algebra R. We start our investigations by considering tilting modules of the form where is a union of tubes, and denotes the universal localization of R at in the sense of Schofield and Crawley-Boevey. Here is a direct sum of the Prüfer modules corresponding to the tubes in . Over the Kronecker algebra, large tilting modules are of this form in all but one case, the exception being the Lukas tilting module L whose tilting class consists of all modules without indecomposable preprojective summands. Over an arbitrary tame hereditary algebra, T can have finite dimensional summands, but the infinite dimensional part of T is still built up from universal localizations, Prüfer modules and (localizations of) the Lukas tilting module. We also recover the classification of the infinite dimensional cotilting R-modules due to Buan and Krause.


2021 ◽  
pp. 1-41
Author(s):  
VOLODYMYR MAZORCHUK ◽  
RAFAEL MRÐEN

Abstract For a finite-dimensional Lie algebra $\mathfrak {L}$ over $\mathbb {C}$ with a fixed Levi decomposition $\mathfrak {L} = \mathfrak {g} \ltimes \mathfrak {r}$ , where $\mathfrak {g}$ is semisimple, we investigate $\mathfrak {L}$ -modules which decompose, as $\mathfrak {g}$ -modules, into a direct sum of simple finite-dimensional $\mathfrak {g}$ -modules with finite multiplicities. We call such modules $\mathfrak {g}$ -Harish-Chandra modules. We give a complete classification of simple $\mathfrak {g}$ -Harish-Chandra modules for the Takiff Lie algebra associated to $\mathfrak {g} = \mathfrak {sl}_2$ , and for the Schrödinger Lie algebra, and obtain some partial results in other cases. An adapted version of Enright’s and Arkhipov’s completion functors plays a crucial role in our arguments. Moreover, we calculate the first extension groups of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules and their annihilators in the universal enveloping algebra, for the Takiff $\mathfrak {sl}_2$ and the Schrödinger Lie algebra. In the general case, we give a sufficient condition for the existence of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules.


2010 ◽  
Vol 24 (24) ◽  
pp. 2485-2509 ◽  
Author(s):  
SUBHASHISH BANERJEE ◽  
R. SRIKANTH

We develop a unified, information theoretic interpretation of the number-phase complementarity that is applicable both to finite-dimensional (atomic) and infinite-dimensional (oscillator) systems, with number treated as a discrete Hermitian observable and phase as a continuous positive operator valued measure (POVM). The relevant uncertainty principle is obtained as a lower bound on entropy excess, X, the difference between the entropy of one variable, typically the number, and the knowledge of its complementary variable, typically the phase, where knowledge of a variable is defined as its relative entropy with respect to the uniform distribution. In the case of finite-dimensional systems, a weighting of phase knowledge by a factor μ (> 1) is necessary in order to make the bound tight, essentially on account of the POVM nature of phase as defined here. Numerical and analytical evidence suggests that μ tends to 1 as the system dimension becomes infinite. We study the effect of non-dissipative and dissipative noise on these complementary variables for an oscillator as well as atomic systems.


2006 ◽  
Vol 21 (12) ◽  
pp. 2645-2657 ◽  
Author(s):  
M. SHARIF

In this paper we discuss matter inheritance collineations by giving a complete classification of spherically symmetric static space–times by their matter inheritance symmetries. It is shown that when the energy–momentum tensor is degenerate, most of the cases yield infinite dimensional matter inheriting symmetries. It is worth mentioning here that two cases provide finite dimensional matter inheriting vectors even for the degenerate case. The nondegenerate case provides finite dimensional matter inheriting symmetries. We obtain different constraints on the energy–momentum tensor in each case. It is interesting to note that if the inheriting factor vanishes, matter inheriting collineations reduce to be matter collineations already available in the literature. This idea of matter inheritance collineations turn out to be the same as homotheties and conformal Killing vectors are for the metric tensor.


Author(s):  
Xiaomin Tang

This paper is devoted to study 2-local derivations on [Formula: see text]-algebra [Formula: see text] which is an infinite-dimensional Lie algebra with some outer derivations. We prove that all 2-local derivations on the [Formula: see text]-algebra [Formula: see text] are derivations. We also give a complete classification of the 2-local derivation on the so-called thin Lie algebra and prove that it admits many 2-local derivations which are not derivations.


1982 ◽  
Vol 25 (1) ◽  
pp. 81-86 ◽  
Author(s):  
David G. Arrell

Let R be a ring with identity, let Ω be an infinite set and let M be the free R-module R(Ω). In [1] we investigated the problem of locating and classifying the normal subgroups of GL(Ω, R), the group of units of the endomorphism ring EndRM, where R was an arbitrary ring with identity. (This extended the work of [3] and [8] where it was necessary for R to satisfy certain finiteness conditions.) When R is a division ring, the complete classification of the normal subgroups of GL(Ω, R) is given in [9] and the corresponding results for a Hilbert space are given in [6] and [7]. The object of this paper is to extend the methods of [1] to yield a classification of the subnormal subgroups of GL(Ω, R) along the lines of that given by Wilson in [10] in the finite dimensional case.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 813
Author(s):  
Wei Wu ◽  
Jin Wang

Wave–particle duality as the defining characteristic of quantum objects is a typical example of the principle of complementarity. The wave–particle–entanglement (WPE) complementarity, initially developed for two-qubit systems, is an extended form of complementarity that combines wave–particle duality with a previously missing ingredient, quantum entanglement. For two-qubit systems in mixed states, the WPE complementarity was further completed by adding yet another piece that characterizes ignorance, forming the wave–particle–entanglement–ignorance (WPEI) complementarity. A general formulation of the WPEI complementarity can not only shed new light on fundamental problems in quantum mechanics, but can also have a wide range of experimental and practical applications in quantum-mechanical settings. The purpose of this study is to establish the WPEI complementarity for general multi-dimensional bipartite systems in pure or mixed states, and extend its range of applications to incorporate hierarchical and infinite-dimensional bipartite systems. The general formulation is facilitated by well-motivated generalizations of the relevant quantities. When faced with different directions of extensions to take, our guiding principle is that the formulated complementarity should be as simple and powerful as possible. We find that the generalized form of the WPEI complementarity contains unequal-weight averages reflecting the difference in the subsystem dimensions, and that the tangle, instead of the squared concurrence, serves as a more suitable entanglement measure in the general scenario. Two examples, a finite-dimensional bipartite system in mixed states and an infinite-dimensional bipartite system in pure states, are studied in detail to illustrate the general formalism. We also discuss our results in connection with some previous work. The WPEI complementarity for general finite-dimensional bipartite systems may be tested in multi-beam interference experiments, while the second example we studied may facilitate future experimental investigations on complementarity in infinite-dimensional bipartite systems.


Author(s):  
DAVID MICHAEL ROBERTS

Abstract Many bundle gerbes are either infinite-dimensional, or finite-dimensional but built using submersions that are far from being fibre bundles. Murray and Stevenson [‘A note on bundle gerbes and infinite-dimensionality’, J. Aust. Math. Soc.90(1) (2011), 81–92] proved that gerbes on simply-connected manifolds, built from finite-dimensional fibre bundles with connected fibres, always have a torsion $DD$ -class. I prove an analogous result for a wide class of gerbes built from principal bundles, relaxing the requirements on the fundamental group of the base and the connected components of the fibre, allowing both to be nontrivial. This has consequences for possible models for basic gerbes, the classification of crossed modules of finite-dimensional Lie groups, the coefficient Lie-2-algebras for higher gauge theory on principal 2-bundles and finite-dimensional twists of topological K-theory.


Sign in / Sign up

Export Citation Format

Share Document