scholarly journals Interleukin 1α (IL-1α) Promotes Pathogenic Immature Myeloid Cells and IL-1β Favors Protective Mature Myeloid Cells During Acute Lung Infection

2018 ◽  
Vol 217 (9) ◽  
pp. 1481-1490 ◽  
Author(s):  
Sivakumar Periasamy ◽  
Jonathan A Harton

Abstract Bacterial pneumonia is a common risk factor for acute lung injury and sepsis-mediated death, but the mechanisms underlying the overt inflammation and accompanying pathology are unclear. Infiltration of immature myeloid cells and necrotizing inflammation mediate severe pathology and death during pulmonary infection with Francisella tularensis. However, eliciting mature myeloid cells provides protection. Yet, the host factors responsible for this pathologic immature myeloid cell response are unknown. Here, we report that while the influx of both mature and immature myeloid cells is strictly MyD88 dependent, the interleukin 1 (IL-1) receptor mediates an important dual function via its ligands IL-1α and IL-1β. Although IL-1β favors the appearance of bacteria-clearing mature myeloid cells, IL-1α contributes to lung infiltration by ineffective and pathologic immature myeloid cells. Finally, IL-1α and IL-1β are not the sole factors involved, but myeloid cell responses during acute pneumonia were largely unaffected by lung levels of interleukin 10, interleukin 17, CXCL1, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor.

Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1211-1217 ◽  
Author(s):  
DA Lipschitz ◽  
KB Udupa ◽  
JM Taylor ◽  
RK Shadduck ◽  
A Waheed

Abstract Weekly medium change or midweek feeding of long-term bone marrow cultures (LTMBCs) results in a significant increase in total myeloid cell production. Proliferative myeloid cells peak 48 hours after feeding, and nonproliferative myeloid cells reach maximum levels at 72 hours. This increase in myelopoiesis is invariably preceded by a significant elevation in biologically and immunologically measurable colony-stimulating factor (CSF) in the supernatants of LTBMC. The level peaks 24 hours after medium change, then gradually returns to basal values. The decrease in CSF relates to its consumption by generating myeloid precursors because no fluctuation in the levels occur in cultures without active myelopoiesis. No significant inhibitors or promoters of CSF were detected. When highly purified L cell CSF, CSF in lung-conditioned medium, or CSF concentrated from LTBMC supernatant is added to cultures, an identical increase in myelopoiesis occurs. Anti- CSF antiserum, added to culture at the time of medium change, totally neutralizes supernatant CSF levels but does not affect myelopoiesis. These findings suggest a potential regulatory role for CSF in myelopoiesis in LTBMC. CSF appears to function within the microenvironment through a mechanism involving cell:cell interactions or by causing the production of other substances that stimulate myelopoiesis. Because exogenous CSF stimulates myelopoiesis, it is likely that it too can react either directly or through microenvironmental cells to stimulate primitive myeloid cells to divide.


1992 ◽  
Vol 12 (1) ◽  
pp. 183-189
Author(s):  
K Morishita ◽  
E Parganas ◽  
T Matsugi ◽  
J N Ihle

Expression of the Evi-1 gene is frequently activated in murine myeloid leukemias by retroviral insertions immediately 5' or 90 kb 5' of the gene. The Evi-1 gene product is a nuclear, DNA-binding zinc finger protein of 145 kDa. On the basis of the properties of the myeloid cell lines in which the Evi-1 gene is activated, it has been hypothesized that its expression blocks normal differentiation. To explore this proposed role, we have constructed a retrovirus vector containing the gene and examined its effects on an interleukin-3-dependent myeloid cell line that differentiates in response to granulocyte colony-stimulating factor (G-CSF). Expression of the Evi-1 gene in these cells did not alter the normal growth factor requirements of the cells. However, expression of the Evi-1 gene blocked the ability of the cells to express myeloperoxidase and to terminally differentiate to granulocytes in response to G-CSF. This effect was not due to altered expression of the G-CSF receptor or to changes in the initial responses of the cells to G-CSF. These results support the hypothesis that the inappropriate expression of the Evi-1 gene in myeloid cells interferes with the ability of the cells to terminally differentiate.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-31-SCI-31
Author(s):  
Dmitry Gabrilovich

Abstract Abstract SCI-31 Myeloid-derived suppressor cells (MDSC) represent an intrinsic part of myeloid cell lineage and comprised of myeloid progenitors and precursors of myeloid cells. In healthy host upon generation in bone marrow immature myeloid cells (IMC) quickly differentiate into mature granulocytes, macrophages, or dendritic cells. In a number of pathological conditions (cancer, various infections diseases, sepsis, trauma, bone marrow transplantation, autoimmune abnormalities) increased production of IMC is associated with partial block of their differentiation and most importantly pathological activation of these cells manifests in up-regulation of arginase, inducible nitric oxide synthase (iNOS) and NO production, increased level of reactive oxygen species (ROS). This results in expansion of IMC with immune suppressive activity. Accumulation of MDSC was detected in practically all mouse tumor models and in patients with different types of cancer. In mice, MDSCs are characterized by the co-expression of myeloid lineage differentiation antigen Gr1 and CD11b. In humans, MDSC are currently defined as CD14-CD11b+ cells or more narrowly as cells that express the common myeloid marker CD33 but lack the expression of markers of mature myeloid and lymphoid cells and the MHC class II molecule HLA-DR. Recently, the morphological heterogeneity of these cells in mice was defined more precisely based on the expression of cell-surface markers Ly6G and Ly6C. Granulocytic MDSCs have a CD11b+Ly6G+Ly6Clow phenotype, whereas MDSCs with monocytic morphology are CD11b+Ly6G-Ly6Chigh. These two subpopulations may have different functions. Accumulation of MDSC is caused by different soluble factors. Recent studies have demonstrated that factors implicated in regulating the expansion of MDSCs can be provisionally split into two main groups with partially overlapping activity. The first group includes factors that are produced primarily by tumor cells and promote the expansion of MDSC through myelopoiesis stimulation, which is associated with inhibition of myeloid-cell differentiation. These factors include stem-cell factor (SCF), macrophage colony-stimulating factor (M-CSF), IL-6, granulocyte/macrophage colony-stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF) and others. Signalling pathways triggered by most of these factors in MDSCs converge on signal transducer and activator of transcription 3 (STAT3). One of the potential targets for STAT3 was recently identified as S100A8/A9 proteins. Accumulation of these proteins in myeloid progenitors prevents their differentiation and results in expansion of MDSC. The second group of factors are produced primarily by activated T cells and tumor stroma and directly activate MDSC. These factors, which include IFN gamma, IL-13, IL-4 and TGFβ, among others, activate several different signaling pathways in MDSCs that involve STAT6, STAT1, and NF-kB. Most studies have shown that the immune-suppressive function of MDSCs requires direct cell–cell contact, which indicates that they operate either through cell-surface receptors and/or through the release of short-lived soluble mediators. Currently, a number of clinical trials explores the possibility of regulating immune responses in cancer by depleting ot inactivating MDSC in cancer patients. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 ◽  
pp. 205031212110125
Author(s):  
Panid Borhanjoo ◽  
Navneet Singh ◽  
Sridesh Nath ◽  
MD Sadakat Chowdhury ◽  
Carl Swanson ◽  
...  

Objectives: Sepsis is one of the leading causes of morbidity and mortality within the healthcare system and remains a diagnostic and therapeutic challenge. A major issue in the diagnosis of sepsis is understanding the pathophysiologic mechanism, which revolves around host immune system activation and dysregulated responses. African Americans are more likely to experience severe sepsis with higher mortality rates compared to the general population. This pilot study characterized multiple inflammatory markers and proteases in plasma of primarily African American and Afro-Caribbean patients with mild sepsis. Methods: Plasma was collected from 16 healthy controls and 15 subjects presenting with sepsis, on admission, and again upon resolution of the signs of sepsis, defined as a resolution of sepsis criteria. Plasma samples were analyzed for cytokines, chemokines, and proteases using multiplex bead assays. Results: Elevated levels of granulocyte colony-stimulating factor, interleukin-10, interleukin-15, interleukin-1 receptor antagonist, interleukin-8, interferon gamma-induced protein 10, monocyte chemoattractant protein-1, matrix metallopeptidase 12, and cathepsin S were identified in plasma from sepsis patients on admission compared to control subjects. Interleukin-6, interleukin-8, granulocyte colony-stimulating factor, and cathepsin S were reduced in sepsis patients upon clinical resolution of sepsis. Conclusion: These findings profile the circulating inflammatory cytokines, chemokines, and proteases in African Americans and Afro-Caribbean patients during sepsis. The role of these targets in sepsis needs addressing in this patient population.


Blood ◽  
1996 ◽  
Vol 88 (4) ◽  
pp. 1234-1247 ◽  
Author(s):  
LT Smith ◽  
S Hohaus ◽  
DA Gonzalez ◽  
SE Dziennis ◽  
DG Tenen

Cytokines, important for lineage commitment and differentiation during hematopoiesis, exert their influence by binding specific receptors. Receptor expression is tightly regulated and examining the factors that govern their expression will allow better understanding of the events that determine lineage commitment. The granulocyte colony-stimulating factor (G-CSF) receptor is expressed exclusively in myeloid cells and the placenta. We show here that the G-CSF receptor transcription start site is identical in each of these tissues. A 1,391-bp fragment of the G-CSF receptor promoter is both active in myeloid cell lines and tissue specific. We have also found two regions that are important for G-CSF receptor promoter activity. One region, located at bp -49, contains a GCAAT site that specifically binds the C/EBP alpha transcription factor in myeloid nuclear extracts. Mutation of this site prevents C/EBP alpha binding and reduces promoter activity by 60%. The other functionally important region of the G-CSF receptor promoter is in the 5′ untranslated region, at bp +36 and +43, where there are two sites for the ets family member PU.1. Mutation of these sites prevents PU.1 binding and reduces promoter activity by 75%. These results reinforce the importance of both PU.1 and C/EBP alpha in the expression of myeloid-specific genes and neutrophil development.


Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 57-62 ◽  
Author(s):  
R Neta ◽  
SN Vogel ◽  
JM Plocinski ◽  
NS Tare ◽  
W Benjamin ◽  
...  

Abstract Interleukin-1 (IL-1) is radioprotective and induces both circulating colony-stimulating factor(s) (CSF) and IL-6 in mice. We evaluated the relationship among these three responses to IL-1 using anti-IL-1 receptor antibody 35F5. This antibody in vitro blocks responses of T cells and fibroblasts, but not of B cells or myeloid cell lines, to IL- 1. Administration of 35F5 alone before irradiation reduced the number of surviving mice compared with those not treated with 35F5, demonstrating that endogenous IL-1 participates in the natural resistance to radiation. Thirty micrograms of 35F5 per mouse also reduced by 92% the survival of irradiated mice pretreated with 0.3 micrograms of IL-1. Similarly, 30 micrograms of 35F5 reduced by 96% to 98% the induction of IL-6 by IL-1. In contrast, 30 micrograms of 35F5 resulted in only moderate reduction of circulating CSF. Consequently, the level of circulating CSF after 35F5 treatment was still equivalent to levels of CSF that were induced by doses of IL-1 in the radioprotective range. Because treatment with 35F5 antibody resulted in the blocking of IL-1-reduced radioprotection, the above results suggest that circulating CSF, by itself, may not be sufficient for radioprotection. This conclusion supports our previous results which showed that granulocyte-macrophage CSF (GM-CSF) and G-CSF were radioprotective only when administered with suboptimal doses of IL-1.


Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 57-62 ◽  
Author(s):  
R Neta ◽  
SN Vogel ◽  
JM Plocinski ◽  
NS Tare ◽  
W Benjamin ◽  
...  

Interleukin-1 (IL-1) is radioprotective and induces both circulating colony-stimulating factor(s) (CSF) and IL-6 in mice. We evaluated the relationship among these three responses to IL-1 using anti-IL-1 receptor antibody 35F5. This antibody in vitro blocks responses of T cells and fibroblasts, but not of B cells or myeloid cell lines, to IL- 1. Administration of 35F5 alone before irradiation reduced the number of surviving mice compared with those not treated with 35F5, demonstrating that endogenous IL-1 participates in the natural resistance to radiation. Thirty micrograms of 35F5 per mouse also reduced by 92% the survival of irradiated mice pretreated with 0.3 micrograms of IL-1. Similarly, 30 micrograms of 35F5 reduced by 96% to 98% the induction of IL-6 by IL-1. In contrast, 30 micrograms of 35F5 resulted in only moderate reduction of circulating CSF. Consequently, the level of circulating CSF after 35F5 treatment was still equivalent to levels of CSF that were induced by doses of IL-1 in the radioprotective range. Because treatment with 35F5 antibody resulted in the blocking of IL-1-reduced radioprotection, the above results suggest that circulating CSF, by itself, may not be sufficient for radioprotection. This conclusion supports our previous results which showed that granulocyte-macrophage CSF (GM-CSF) and G-CSF were radioprotective only when administered with suboptimal doses of IL-1.


1992 ◽  
Vol 12 (1) ◽  
pp. 183-189 ◽  
Author(s):  
K Morishita ◽  
E Parganas ◽  
T Matsugi ◽  
J N Ihle

Expression of the Evi-1 gene is frequently activated in murine myeloid leukemias by retroviral insertions immediately 5' or 90 kb 5' of the gene. The Evi-1 gene product is a nuclear, DNA-binding zinc finger protein of 145 kDa. On the basis of the properties of the myeloid cell lines in which the Evi-1 gene is activated, it has been hypothesized that its expression blocks normal differentiation. To explore this proposed role, we have constructed a retrovirus vector containing the gene and examined its effects on an interleukin-3-dependent myeloid cell line that differentiates in response to granulocyte colony-stimulating factor (G-CSF). Expression of the Evi-1 gene in these cells did not alter the normal growth factor requirements of the cells. However, expression of the Evi-1 gene blocked the ability of the cells to express myeloperoxidase and to terminally differentiate to granulocytes in response to G-CSF. This effect was not due to altered expression of the G-CSF receptor or to changes in the initial responses of the cells to G-CSF. These results support the hypothesis that the inappropriate expression of the Evi-1 gene in myeloid cells interferes with the ability of the cells to terminally differentiate.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1211-1217
Author(s):  
DA Lipschitz ◽  
KB Udupa ◽  
JM Taylor ◽  
RK Shadduck ◽  
A Waheed

Weekly medium change or midweek feeding of long-term bone marrow cultures (LTMBCs) results in a significant increase in total myeloid cell production. Proliferative myeloid cells peak 48 hours after feeding, and nonproliferative myeloid cells reach maximum levels at 72 hours. This increase in myelopoiesis is invariably preceded by a significant elevation in biologically and immunologically measurable colony-stimulating factor (CSF) in the supernatants of LTBMC. The level peaks 24 hours after medium change, then gradually returns to basal values. The decrease in CSF relates to its consumption by generating myeloid precursors because no fluctuation in the levels occur in cultures without active myelopoiesis. No significant inhibitors or promoters of CSF were detected. When highly purified L cell CSF, CSF in lung-conditioned medium, or CSF concentrated from LTBMC supernatant is added to cultures, an identical increase in myelopoiesis occurs. Anti- CSF antiserum, added to culture at the time of medium change, totally neutralizes supernatant CSF levels but does not affect myelopoiesis. These findings suggest a potential regulatory role for CSF in myelopoiesis in LTBMC. CSF appears to function within the microenvironment through a mechanism involving cell:cell interactions or by causing the production of other substances that stimulate myelopoiesis. Because exogenous CSF stimulates myelopoiesis, it is likely that it too can react either directly or through microenvironmental cells to stimulate primitive myeloid cells to divide.


Sign in / Sign up

Export Citation Format

Share Document