scholarly journals Biology and Management of Varroa destructor (Mesostigmata: Varroidae) in Apis mellifera (Hymenoptera: Apidae) Colonies

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Morgan A Roth ◽  
James M Wilson ◽  
Keith R Tignor ◽  
Aaron D Gross

Abstract Varroa mite (Varroa destructor Anderson and Trueman) infestation of European honey bee (Apis mellifera L.) colonies has been a growing cause of international concern among beekeepers throughout the last 50 yr. Varroa destructor spread from the Asian honey bee (Apis cerana Fabricius [Hymenoptera: Apidae]) to A. mellifera populations in Europe in the 1970s, and subsequently traveled to the Americas. In addition to causing damage through feeding upon lipids of larval and adult bees, V. destructor also facilitates the spread of several viruses, with deformed wing virus being most prevalent. Several sampling methods have been developed for estimating infestation levels of A. mellifera colonies, and acaricide treatments have been implemented. However, overuse of synthetic acaricides in the past has led to widespread acaricide resistant V. destructor populations. The application of Integrated Pest Management (IPM) techniques is a more recent development in V. destructor control and is suggested to be more effective than only using pesticides, thereby posing fewer threats to A. mellifera colonies. When using IPM methods, informed management decisions are made based upon sampling, and cultural and mechanical controls are implemented prior to use of acaricide treatments. If acaricides are deemed necessary, they are rotated based on their mode of action, thus avoiding V. destructor resistance development.

2020 ◽  
Vol 4 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Amélie Noël ◽  
Yves Le Conte ◽  
Fanny Mondet

Since its migration from the Asian honey bee (Apis cerana) to the European honey bee (Apis mellifera), the ectoparasitic mite Varroa destructor has emerged as a major issue for beekeeping worldwide. Due to a short history of coevolution, the host–parasite relationship between A. mellifera and V. destructor is unbalanced, with honey bees suffering infestation effects at the individual, colony and population levels. Several control solutions have been developed to tackle the colony and production losses due to Varroa, but the burden caused by the mite in combination with other biotic and abiotic factors continues to increase, weakening the beekeeping industry. In this synthetic review, we highlight the main advances made between 2015 and 2020 on V. destructor biology and its impact on the health of the honey bee, A. mellifera. We also describe the main control solutions that are currently available to fight the mite and place a special focus on new methodological developments, which point to integrated pest management strategies for the control of Varroa in honey bee colonies.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Desiderato Annoscia ◽  
Gennaro Di Prisco ◽  
Andrea Becchimanzi ◽  
Emilio Caprio ◽  
Davide Frizzera ◽  
...  

AbstractThe neonicotinoid Clothianidin has a negative impact on NF-κB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 94 ◽  
Author(s):  
Sofia Levin ◽  
Noa Sela ◽  
Tal Erez ◽  
David Nestel ◽  
Jeffery Pettis ◽  
...  

Varroa destructor is an ectoparasitic mite of Asian or Eastern honeybees Apis cerana (A. cerana) which has become a serious threat to European subspecies of Western honeybees Apis mellifera (A. mellifera) within the last century. V. destructor and its vectored honeybee viruses became serious threats for colony survival. This is a short period for pathogen- and host-populations to adapt. To look for possible variation in the composition of viral populations we performed RNA metagenomic analysis of the Western honeybee subspecies A. m. ligustica, A. m. syriaca, A. m. intermissa, and A. cerana and their respective V. destructor mites. The analysis revealed two novel viruses: Varroa orthomyxovirus-1 (VOV-1) in A. mellifera and V. destructor and a Hubei like-virga virus-14 homolog in V. destructor. VOV-1 was more prevalent in V. destructor than in A. mellifera and we found evidence for viral replication in both hosts. Interestingly, we found differences in viral loads of A. cerana and their V. destructor, A. m. intermissa, and its V. destructor showed partial similarity, while A. m. ligustica and A. m. syriaca and their varroa where very similar. Deformed wing virus exhibited 82.20%, 99.20%, 97.90%, and 0.76% of total viral reads in A. m. ligustica, A. m. syriaca, A. m. intermissa, and A. cerana, respectively. This is the first report of a complete segmented-single-stranded negative-sense RNA virus genome in honeybees and V. destructor mites.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 243 ◽  
Author(s):  
Aleš Gregorc ◽  
Blair Sampson

Determining varroa mite infestation levels in honey bee colonies and the proper method and time to perform a diagnosis are important for efficient mite control. Performing a powdered sugar shake or counting mites that drop from combs and bees onto a hive bottom board are two reliable methods for sampling varroa mite to evaluate the efficacy of an acaricide treatment. This overview summarizes studies that examine the efficacy of organic acids and essential oils, mite monitoring, and brood interruption for integrated varroa mite control in organic beekeeping.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 969
Author(s):  
Isobel Grindrod ◽  
Jessica L. Kevill ◽  
Ethel M. Villalobos ◽  
Declan C. Schroeder ◽  
Stephen John Martin

The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa’s association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 510
Author(s):  
Monica Shrestha ◽  
Jakob Wegener ◽  
Ishan Gautam ◽  
Madhusudan Singh ◽  
Christoph Schwekendiek ◽  
...  

The mites Varroa destructor Anderson and Trueman and Tropilaelaps mercedesae Anderson and Morgan are both serious threats to the Apis mellifera beekeeping industry. A trait frequently used in selection programs for V. destructor resistance is hygienic behavior, the selective removal of diseased/damaged brood. Here, we measured the level of association of the expression of hygienic behavior against both mites in A. mellifera, by observing whether the same individual bees would carry out the opening and removal of brood infested by the two parasites. The groups of bees showing these behaviors on cells artificially infested by either parasite showed a large overlap, making it appear likely that the two traits are at least closely coupled. Therefore, breeding for V. destructor resistance based on hygienic behavior could prepare A. mellifera populations for dealing with Tropilaelaps sp. mites, and vice versa. Using the same bioassay, we also compared the hygienic behavior of A. mellifera towards T. mercedesae to that of the Asiatic honey bee, Apis cerana. A. cerana workers eliminated a greater proportion of infested cells, which may in part explain the resistance of this bee to Tropilaelaps and the observation that Tropilaelaps reproduction on brood of this species is extremely rare.


Sign in / Sign up

Export Citation Format

Share Document