parasitic mite
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 59)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 873
Author(s):  
Deepani D. Fernando ◽  
Pasi K. Korhonen ◽  
Robin B. Gasser ◽  
Katja Fischer

In a quest for new interventions against scabies—a highly significant skin disease of mammals, caused by a parasitic mite Sarcoptes scabiei—we are focusing on finding new intervention targets. RNA interference (RNAi) could be an efficient functional genomics approach to identify such targets. The RNAi pathway is present in S. scabiei and operational in the female adult mite, but other developmental stages have not been assessed. Identifying potential intervention targets in the egg stage is particularly important because current treatments do not kill this latter stage. Here, we established an RNAi tool to silence single-copy genes in S. scabiei eggs. Using sodium hypochlorite pre-treatment, we succeeded in rendering the eggshell permeable to dsRNA without affecting larval hatching. We optimised the treatment of eggs with gene-specific dsRNAs to three single-copy target genes (designated Ss-Cof, Ss-Ddp, and Ss-Nan) which significantly and repeatedly suppressed transcription by ~66.6%, 74.3%, and 84.1%, respectively. Although no phenotypic alterations were detected in dsRNA-treated eggs for Ss-Cof and Ss-Nan, the silencing of Ss-Ddp resulted in a 38% reduction of larval hatching. This RNAi method is expected to provide a useful tool for larger-scale functional genomic investigations for the identification of essential genes as potential drug targets.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12634
Author(s):  
André Morrill ◽  
Kari M. Kaunisto ◽  
Julia J. Mlynarek ◽  
Ella Sippola ◽  
Eero J. Vesterinen ◽  
...  

Sexes often differ in foraging and diet, which is associated with sex differences in size, trophic morphology, use of habitats, and/or life history tactics. Herein, strikingly similar diets were found for adult sexes of a dragonfly (Leucorrhinia intacta), based on comparing 141 dietary taxa identified from the metabarcoding of mitochondrial DNA archived in feces. Arthropods in > 5% of samples included five species of dipterans, two hemipterans, two spider species and one parasitic mite. The mite was not traditional prey as its presence was likely due to DNA contamination of samples arising through parasitism or possibly via accidental consumption during grooming, and therefore the mite was excluded from diet characterizations. Common prey species were found with statistically indistinguishable frequencies in male and female diets, with one exception of an aphid more often found in male diets, although this pattern was not robust to corrections for multiple statistical tests. While rare prey species were often found in diets of only one sex, instances of this were more frequent in the more oft-sampled females, suggesting sampling artefact. Sexes did not differ in the mean prey species richness in their diets. Overall, sexes showed statistically indistinguishable diets both on a prey species-by-species basis and in terms of multivariate characterizations of diet composition, derived from presence-absence data of prey species analyzed via PERMANOVA and accumulation curves. Males and females may have similar diets by being both opportunistic and generalist predators of arthropods, using the same foraging habitats and having similar sizes and flight agilities. Notably, similarities in diet between sexes occur alongside large interindividual differences in diet, within sexes. Researchers intending on explaining adaptive sex differences in diet should consider characteristics of species whose sexes show similar diets.


2021 ◽  
Vol 948 (1) ◽  
pp. 012007
Author(s):  
B H Budianto ◽  
E Basuki

Abstract Parasitic mite infections are very common on virtually all organisms including tree geckos. This research was aimed to determine the species and prevalence of parasitic mites infecting tree lizards in Purwokerto, Central Java. This research employed a survey method with a purposive random sampling technique. One hundred individuals of tree lizards were obtained from trees in 4 different sub-districts in Purwokerto. The results showed that from 3 species of tree geckos namely, Hemidactylus platyurus, H. frenatus and H. garnotii, only the last one was not infected by parasitic mites. The prevalence of parasitic mites in H. garnotii was 0%, while in H. frenatus and H. platyurus were 27% and 29%, respectively. The total prevalence of parasitic mites on tree geckos in Purwokerto, Central Java, was 28%. The results showed that there were 5 (five) species of parasitic mites belonging to the genus Geckobia, namely G. keegani, G. gleadovania, G. turkestana, G. simplex and G. diversipilis. The prevalence of G. gleadovania in H. frenatus geckos was 100%, while in H. platyurus geckos, the prevalence of infection by G. diversipilis was also 100%. The most infected body part was the trunk where the prevalence was 57%.


2021 ◽  
Vol 224 (18) ◽  
Author(s):  
Michael W. Butler ◽  
Emma N. Stierhoff ◽  
Julianna M. Carpenetti ◽  
Matthew A. Bertone ◽  
Alyssa M. Addesso ◽  
...  

ABSTRACT The purpose of mounting an immune response is to destroy pathogens, but this response comes at a physiological cost, including the generation of oxidative damage. However, many studies on the effects of immune challenges employ a single high dose of a simulated infection, meaning that the consequences of more mild immune challenges are poorly understood. We tested whether the degree of immunological challenge in tree swallows (Tachycineta bicolor) affects oxidative physiology and body mass, and whether these metrics correlate with parasitic nest mite load. We injected 14 day old nestlings with 0, 0.01, 0.1 or 1 mg lipopolysaccharide (LPS) per kg body mass, then collected a blood sample 24 h later to quantify multiple physiological metrics, including oxidative damage (i.e. d-ROMs), circulating amounts of triglyceride and glycerol, and levels of the acute phase protein haptoglobin. After birds had fledged, we identified and counted parasitic nest mites (Dermanyssus spp. and Ornithonyssus spp.). We found that only nestlings injected with 1 mg LPS kg−1 body mass, which is a common dosage in ecoimmunological studies, lost more body mass than individuals from other treatment groups. However, every dose of LPS resulted in a commensurate increase in oxidative damage. Parasitic mite abundance had no effect on oxidative damage across treatments. The amount of oxidative damage correlated with haptoglobin levels, suggesting compensatory mechanisms to limit self-damage during an immune response. We conclude that while only the highest-intensity immune challenges resulted in costs related to body mass, even low-intensity immune challenges result in detectable increases in oxidative damage.


2021 ◽  
Vol 288 (1956) ◽  
pp. 20211375
Author(s):  
Isobel Grindrod ◽  
Stephen J. Martin

The near-globally distributed ecto-parasitic mite of the Apis mellifera honeybee, Varroa destructor, has formed a lethal association with Deformed wing virus, a once rare and benign RNA virus. In concert, the two have killed millions of wild and managed colonies, particularly across the Northern Hemisphere, forcing the need for regular acaricide application to ensure colony survival. However, despite the short association (in evolutionary terms), a small but increasing number of A. mellifera populations across the globe have been surviving many years without any mite control methods. This long-term survival, or Varroa resistance, is consistently associated with the same suite of traits (recapping, brood removal and reduced mite reproduction) irrespective of location. Here we conduct an analysis of data extracted from 60 papers to illustrate how these traits connect together to explain decades of mite resistance data. We have potentially a unified understanding of natural Varroa resistance that will help the global industry achieve widespread miticide-free beekeeping and indicate how different honeybee populations across four continents have resolved a recent threat using the same suite of behaviours.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254328
Author(s):  
Akindele Oluwole Ogunfunmilayo ◽  
Shakiru Adewale Kazeem ◽  
Joy Ejemen Idoko ◽  
Raphael Abiodun Adebayo ◽  
Elizabeth Yetunde Fayemi ◽  
...  

Fall armyworm (FAW; Spodoptera frugiperda), an exotic moth which recently invaded Africa, is a highly destructive pest of cereals especially maize a highly valued staple crop in Nigeria. The use of natural enemies such as predators or parasitoids for FAW control is more economically viable and environmentally safer than currently recommended synthetic insecticides. Natural enemies to combat the pest have not yet been reported in Nigeria. An exploration for the pests’ natural enemies was undertaken by collecting FAW eggs and larvae from maize fields. These were reared in the laboratory for emergence, identification and efficacy as natural enemies. This yielded Euplectrus laphygmae (Hymenoptera: Eulophidae); Telenomus remus (Hymenoptera: Platygastridae) and Trombidium sp. (Acari.: Trombidiidae). Cotesia or Apanteles spp. were inferred to occur since Stictopisthus sp. (Hym.: Ichneumonidae), a secondary parasitoid, that attacks cocoons of Microgasterinae (e.g. Cotesia, Apanteles etc.) also emerged. Species of yet-to-be identified predators were also observed in various niches of maize plants. A positive relationship was found between FAW instar and the number of E. laphygmae eggs/instar ranging, on average, from 1.5 on second instar to 5.5 on fourth instars hosts. Parasitism rate of T. remus on FAW eggs was 100%. Parasitic mite infestation resulted in increasing paleness, reduced feeding, growth and movement as well as death of FAW 1st instars. Thus, the occurrence of FAW natural enemies in Nigeria calls for advocacy campaign to incorporate their use into integrated pest management strategies that attract and allow natural enemies to thrive for FAW management.


Author(s):  
Amin Shojaei ◽  
Mohammad Khanjani ◽  
Alireza Nourian ◽  
Pezhman Mahmoodi

Deformed wing virus is one of the most common viral infections in honeybee populations around the world. In this study, a total of 30 apiaries located in different geographical regions of Hamedan, Iran were analyzed for the presence of deformed wing virus on capped larvae and workers of the honeybee, Apis mellifera (Hym: Apidae), as well as the parasitic mite, Varroa destructor (Acari: Varroidae), using reverse-transcription PCR. Two target sequences within the putative VP1, VP4, and VP2 structural-protein genes and the RNA helicase enzyme gene, were selected for amplification and sequencing. According to the results, 36.6% of apiaries were found to be infected with deformed wing virus, including 8, 0, and 3 positive samples on capped larvae and workers, and Varroa mites, respectively. Four strains of the virus obtained from honeybees and mites were selected for analysis of genetic diversity and phylogenetic relationships with other sequences deposited in GenBank. The results showed a high degree of similarity between the virus strains in honeybee and Varroa mite. The phylogenetic results highlight the higher suitability of non-structural in comparison with structural proteins for genetic diversity and phylogenetic studies of deformed wing virus strains.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 529
Author(s):  
Coby van Dooremalen ◽  
Frank van Langevelde

For more than three decades, honeybee colonies (Apis mellifera) have experienced high losses during winter and these losses are still continuing. It is crucial that beekeepers monitor their colonies closely and anticipate losses early enough to apply mitigating actions. We tested whether colony size can be used as early predictor for potential colony losses, in particular due to the parasitic mite Varroa destructor. V. destructor is one of the most important causes of these losses. Such an early predictor for potential V. destructor induced losses is especially relevant as measuring V. destructor load in colonies is difficult and cumbersome. Over three years, we monitored colonies with high and low V. destructor loads from July until March of the next year. We found that differences in colony size were only visible after November, even though we lost almost all colonies every winter in the group with a high V. destructor load. In the Northern hemisphere, November is considered to be too late for beekeepers to strengthen colonies in preparation for winter. We therefore argue that early warning signs for potential colony losses due to V. destructor are urgently needed to allow beekeepers to prevent winter losses. We discuss the role of precision apiculture in monitoring the health and productivity of beehive colonies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Melissa A. Y. Oddie ◽  
Ashley Burke ◽  
Bjørn Dahle ◽  
Yves Le Conte ◽  
Fanny Mondet ◽  
...  

AbstractCell recapping is a behavioural trait of honeybees (Apis mellifera) where cells with developing pupae are uncapped, inspected, and then recapped, without removing the pupae. The ectoparasitic mite Varroa destructor, unarguably the most destructive pest in apiculture world-wide, invades the cells of developing pupae to feed and reproduce. Honeybees that target mite infested cells with this behaviour may disrupt the reproductive cycle of the mite. Hence, cell recapping has been associated with colony-level declines in mite reproduction. In this study we compared the colony-level efficacy of cell recapping (how often infested cells are recapped) to the average mite fecundity in A. mellifera. Our study populations, known to be adapted to V. destructor, were from Avignon, France, Gotland, Sweden, and Oslo, Norway, and were compared to geographically similar, treated control colonies. The results show that colonies with a higher recapping efficacy also have a lower average mite reproductive success. This pattern was likely driven by the adapted populations as they had the largest proportion of highly-targeted cell recapping. The consistent presence of this trait in mite-resistant and mite-susceptible colonies with varying degrees of expression may make it a good proxy trait for selective breeding on a large scale.


Sign in / Sign up

Export Citation Format

Share Document