The Coverings of the Brain and the Ventricular System

2016 ◽  
pp. 111-119
Author(s):  
Per Brodal
Keyword(s):  
1960 ◽  
Vol 111 (2) ◽  
pp. 145-153 ◽  
Author(s):  
Abraham Penner ◽  
Alice Ida Bernheim

The introduction of Shiga toxin into the ventricular system of the brain with major location in the third ventricle resulted in a response similar to that following the administration of the toxin either intravenously or by cross-circulation. The intravenous administration at the dosage level employed would have elicited no response. These observations lend support to the hypothesis that Shiga toxin activates some mechanisms in the central nervous system which are capable of producing visceral lesions. These mechanisms are those which control the vasomotor components of homeostasis. This hypothesis permits an explanation of the proximo-distal and intramural features of the lesion.


1976 ◽  
Vol 51 (s3) ◽  
pp. 399s-402s ◽  
Author(s):  
P. Schelling ◽  
J. S. Hutchinson ◽  
U. Ganten ◽  
G. Sponer ◽  
D. Ganten

1. Anaesthetized, nephrectomized rats were infused intravenously with unlabelled angiotensin II (AII) or with [3H]angiotensin II (3H-labelled AII). The brain ventricular system was perfused with artificial cerebrospinal fluid. The perfusate was collected from the cisterna magna and analysed for AII by radioimmunological and biochemical methods. 2. No increase of immunoreactive AII in cerebrospinal fluid could be shown during intravenous infusion of AII. 3. During intravenous infusions of 3H-labelled AII at pressor doses small amounts of radioactivity were found in cerebrospinal fluid perfusate. 4. The radioactivity of cerebrospinal fluid outflow could not be related to AII.


2021 ◽  
pp. 17-20
Author(s):  
Ruple S. Laughlin

Knowledge of the normal structure and function of the meninges and ventricular system can aid in recognizing and understanding pathologic states. This chapter reviews the meninges, ventricular system, and cerebrospinal fluid (CSF) production. Three layers of meninges cover the brain and spinal cord: dura, arachnoid, and pia. They 1) protect the underlying brain and spinal cord, 2) serve as a support framework for important arteries and veins, and 3) enclose a fluid-filled cavity that is important for normal function of the brain and spinal cord.


2016 ◽  
Vol 37 (2) ◽  
pp. 72-83 ◽  
Author(s):  
Lindsay Stratchko ◽  
Irina Filatova ◽  
Amit Agarwal ◽  
Sangam Kanekar

2017 ◽  
Vol 65 (3) ◽  
pp. 473-477 ◽  
Author(s):  
Jorge Eduardo Duque-Parra ◽  
John Barco-Ríos ◽  
Johnny Fernando García-Aguirre

Introducción. El sistema ventricular encefálico se conoció, con parcialidad, en el siglo III a.C., fecha desde la que diversos investigadores contribuyeron a una mejor comprensión de dicho sistema, desentrañando sus ubicaciones en el sistema nervioso central y relacionándolos con ciertos aspectos funcionales que surgieron de conceptos filosóficos. Esto permitió un acercamiento más objetivo hacia las cavitaciones relacionadas con la formación de líquido cerebroespinal.Objetivo. Referenciar, de forma cronológica, los conceptos más trascendentes de la historia del sistema ventricular encefálico.Materiales y métodos. Se consultaron diversas fuentes bibliográficas relacionadas con el sistema ventricular, para después ordenarlas según su cronología, de modo que se concluyera con una aproximación más concreta de la morfología funcional del sistema ventricular.Conclusión. Aristóteles fue el primero en abordar el sistema ventricular encefálico, de modo que, conforme el paso de los años, su conocimiento se fue depurando en cuanto a organización, función y número de cavidades, hasta llegar a proponer la existencia de ocho ventrículos. En la actualidad se reconocen cinco ventrículos, de los cuales cuatro son componentes encefálicos: dos en cerebro, uno en diencéfalo, otro en tronco encefálico y un quinto en la parte terminal de la médula espinal.


1965 ◽  
Vol 208 (6) ◽  
pp. 1058-1064 ◽  
Author(s):  
Leonard Graziani ◽  
Anthony Escriva ◽  
Robert Katzman

Ca exchange was measured in anesthetized cats during steady-state ventriculocisternal perfusions. When Ca45 was added to the perfusate the efflux coefficient from CSF averaged 0.025 ml/min of CSF cleared of Ca45. This coefficient was independent of CSF Ca concentration, indicating passive diffusion. About onethird of this isotope was recovered in brain tissue, two-thirds presumably diffused into blood. The brain radioactivity was localized to areas immediately adjacent to the CSF pathway. When the isotope was given systemically, the efflux coefficient into the ventricular system averaged 0.015 ml/min of serum effectively cleared of Ca45. In these experiments the specific activity of the CSF approached that of the serum. At the same time the specific activity of the brain Ca was low. Hence, the chief source of the Ca entering CSF must be blood. The rate of movement of Ca45 from blood to CSF was not altered when CSF formation was suppressed by adding acetazolamide or lowering the pH of the perfusate. This suggests that Ca transport is independent of the bulk fluid formation.


Sign in / Sign up

Export Citation Format

Share Document