Composite bulges – II. Classical bulges and nuclear discs in barred galaxies: the contrasting cases of NGC 4608 and NGC 4643
ABSTRACT We present detailed morphological, photometric, and stellar-kinematic analyses of the central regions of two massive, early-type barred galaxies with nearly identical large-scale morphologies. Both have large, strong bars with prominent inner photometric excesses that we associate with boxy/peanut-shaped (B/P) bulges; the latter constitute ∼30 per cent of the galaxy light. Inside its B/P bulge, NGC 4608 has a compact, almost circular structure (half-light radius Re ≈ 310 pc, Sérsic n = 2.2) we identify as a classical bulge, amounting to 12.1 per cent of the total light, along with a nuclear star cluster (Re ∼ 4 pc). NGC 4643, in contrast, has a nuclear disc with an unusual broken-exponential surface-brightness profile (13.2 per cent of the light), and a very small spheroidal component (Re ≈ 35 pc, n = 1.6; 0.5 per cent of the light). IFU stellar kinematics support this picture, with NGC 4608’s classical bulge slowly rotating and dominated by high velocity dispersion, while NGC 4643’s nuclear disc shows a drop to lower dispersion, rapid rotation, V–h3 anticorrelation, and elevated h4. Both galaxies show at least some evidence for V–h3correlation in the bar (outside the respective classical bulge and nuclear disc), in agreement with model predictions. Standard two-component (bulge/disc) decompositions yield B/T ∼ 0.5–0.7 (and bulge n > 2) for both galaxies. This overestimates the true ‘spheroid’ components by factors of 4 (NGC 4608) and over 100 (NGC 4643), illustrating the perils of naive bulge-disc decompositions applied to massive barred galaxies.