scholarly journals Statistical properties of damped Lyman-alpha systems from Sloan Digital Sky Survey DR12

2016 ◽  
Vol 466 (2) ◽  
pp. 2111-2122 ◽  
Author(s):  
Simeon Bird ◽  
Roman Garnett ◽  
Shirley Ho
2019 ◽  
Vol 624 ◽  
pp. A21 ◽  
Author(s):  
N. G. Guseva ◽  
Y. I. Izotov ◽  
K. J. Fricke ◽  
C. Henkel

A large sample of Mg II emitting star-forming galaxies with low metallicity [O/H] = log(O/H) – log(O/H)⊙ between –0.2 and –1.2 dex is constructed from Data Release 14 of the Sloan Digital Sky Survey. We selected 4189 galaxies with Mg II λ2797, λ2803 emission lines in the redshift range z ∼ 0.3–1.0 or 35% of the total Sloan Digital Sky Survey star-forming sample with redshift z ≥ 0.3. We study the dependence of the magnesium-to-oxygen and magnesium-to-neon abundance ratios on metallicity. Extrapolating this dependence to [Mg/Ne] = 0 and to solar metallicity we derive a magnesium depletion of [Mg/Ne] ≃ –0.4 (at solar metallicity). We prefer neon instead of oxygen to evaluate the magnesium depletion in the interstellar medium because neon is a noble gas and is not incorporated into dust, contrary to oxygen. Thus, we find that more massive and more metal abundant galaxies have higher magnesium depletion. The global parameters of our sample, such as the mass of the stellar population and star formation rate, are compared with previously obtained results from the literature. These results confirm that Mg II emission has a nebular origin. Our data for interstellar magnesium-to-oxygen abundance ratios relative to the solar value are in good agreement with similar measurements made for Galactic stars, for giant stars in the Milky Way satellite dwarf galaxies, and with low-metallicity damped Lyman-alpha systems.


2020 ◽  
Vol 493 (2) ◽  
pp. 1936-1947 ◽  
Author(s):  
Agustín Rost ◽  
Federico Stasyszyn ◽  
Luis Pereyra ◽  
Héctor J Martínez

ABSTRACT In this work, we compare three catalogues of cosmological filaments identified in the Sloan Digital Sky Survey by means of different algorithms by Tempel et al., Pereyra et al., and Martínez et al. We analyse how different identification techniques determine differences in the filament statistical properties: length, elongation, redshift distribution, and abundance. We find that the statistical properties of the filaments strongly depend on the identification algorithm. We use a volume-limited sample of galaxies to characterize other properties of filaments such as: galaxy overdensity, luminosity function of galaxies, mean galaxy luminosity, filament luminosity, and the overdensity profile of galaxies around filaments. In general, we find that these properties primarily depended on filament length. Shorter filaments have larger overdensities, are more populated by red galaxies, and have better defined galaxy overdensity profiles, than longer filaments. Concluding that galaxies belonging to filaments have characteristic signatures depending on the identification algorithm used.


2001 ◽  
Vol 122 (3) ◽  
pp. 1238-1250 ◽  
Author(s):  
Kazuhiro Shimasaku ◽  
Masataka Fukugita ◽  
Mamoru Doi ◽  
Masaru Hamabe ◽  
Takashi Ichikawa ◽  
...  

2008 ◽  
Vol 4 (S255) ◽  
pp. 129-133
Author(s):  
Regina E. Schulte-Ladbeck

AbstractI report on observations of the z=t 0.01 dwarf galaxy SBS1543+593 which is projected onto the background QSO HS1543+5921. As a star-forming galaxy first noted in emission, this dwarf is playing a pivotal role in our understanding of high-redshift galaxy populations, because it also gives rise to a Damped Lyman Alpha system. This enabled us to analyze, for the first time, the chemical abundance of α elements in a Damped Lyman Alpha galaxy using both, emission and absorption diagnostics. We find that the abundances agree with one another within the observational uncertainties. I discuss the implications of this result for the interpretation of high-redshift galaxy observations. A catalog of dwarf-galaxy–QSO projections culled from the Sloan Digital Sky Survey is provided to stimulate future work.


2017 ◽  
Vol 471 (3) ◽  
pp. 3428-3442 ◽  
Author(s):  
Sandhya M. Rao ◽  
David A. Turnshek ◽  
Gendith M. Sardane ◽  
Eric M. Monier

2014 ◽  
Vol 4 (3) ◽  
pp. 655-661
Author(s):  
Waleed Elsanhoury

Using Sloan Digital Sky Survey SDSS catalog, some intrinsic characteristics of Quasars (10,000 points) are developed of these are the strong correlations between redshifts and other parameters, e.g. combined magnitude, luminosity, and absolute magnitude .Moreover ,the Karlsson peak of our sample is also computed.


2021 ◽  
Vol 504 (1) ◽  
pp. 65-88
Author(s):  
Abhijeet Anand ◽  
Dylan Nelson ◽  
Guinevere Kauffmann

ABSTRACT In order to study the circumgalactic medium (CGM) of galaxies we develop an automated pipeline to estimate the optical continuum of quasars and detect intervening metal absorption line systems with a matched kernel convolution technique and adaptive S/N criteria. We process ∼ one million quasars in the latest Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and compile a large sample of ∼ 160 000 Mg ii absorbers, together with ∼ 70 000 Fe ii systems, in the redshift range 0.35 < zabs < 2.3. Combining these with the SDSS DR16 spectroscopy of ∼1.1 million luminous red galaxies (LRGs) and ∼200 000 emission line galaxies (ELGs), we investigate the nature of cold gas absorption at 0.5 < z < 1. These large samples allow us to characterize the scale dependence of Mg ii with greater accuracy than in previous work. We find that there is a strong enhancement of Mg ii absorption within ∼50 kpc of ELGs, and the covering fraction within 0.5rvir of ELGs is 2–5 times higher than for LRGs. Beyond 50 kpc, there is a sharp decline in Mg ii for both kinds of galaxies, indicating a transition to the regime where the CGM is tightly linked with the dark matter halo. The Mg ii-covering fraction correlates strongly with stellar mass for LRGs, but weakly for ELGs, where covering fractions increase with star formation rate. Our analysis implies that cool circumgalactic gas has a different physical origin for star-forming versus quiescent galaxies.


2019 ◽  
Vol 15 (S359) ◽  
pp. 441-443
Author(s):  
F. S. Lohmann ◽  
A. Schnorr-Müller ◽  
M. Trevisan ◽  
R. Riffel ◽  
N. Mallmann ◽  
...  

AbstractObservations at high redshift reveal that a population of massive, quiescent galaxies (called red nuggets) already existed 10 Gyr ago. These objects undergo a significant size evolution over time, likely due to minor mergers. In this work we present an analysis of local massive compact galaxies to assess if their properties are consistent with what is expected for unevolved red nuggets (relic galaxies). Using integral field spectroscopy (IFS) data from the MaNGA survey from the Sloan Digital Sky Survey (SDSS), we characterized the kinematics and properties of stellar populations of massive compact galaxies, and find that these objects exhibit, on average, a higher rotational support than a control sample of average sized early-type galaxies. This is in agreement with a scenario in which these objects have a quiet accretion history, rendering them candidates for relic galaxies.


2020 ◽  
Vol 500 (4) ◽  
pp. 4469-4490 ◽  
Author(s):  
James Trussler ◽  
Roberto Maiolino ◽  
Claudia Maraston ◽  
Yingjie Peng ◽  
Daniel Thomas ◽  
...  

ABSTRACT We investigate the environmental dependence of the stellar populations of galaxies in Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Echoing earlier works, we find that satellites are both more metal-rich (<0.1 dex) and older (<2 Gyr) than centrals of the same stellar mass. However, after separating star-forming, green valley, and passive galaxies, we find that the true environmental dependence of both stellar metallicity (<0.03 dex) and age (<0.5 Gyr) is in fact much weaker. We show that the strong environmental effects found when galaxies are not differentiated result from a combination of selection effects brought about by the environmental dependence of the quenched fraction of galaxies, and thus we strongly advocate for the separation of star-forming, green valley, and passive galaxies when the environmental dependence of galaxy properties are investigated. We also study further environmental trends separately for both central and satellite galaxies. We find that star-forming galaxies show no environmental effects, neither for centrals nor for satellites. In contrast, the stellar metallicities of passive and green valley satellites increase weakly (<0.05 and <0.08 dex, respectively) with increasing halo mass, increasing local overdensity and decreasing projected distance from their central; this effect is interpreted in terms of moderate environmental starvation (‘strangulation’) contributing to the quenching of satellite galaxies. Finally, we find a unique feature in the stellar mass–stellar metallicity relation for passive centrals, where galaxies in more massive haloes have larger stellar mass (∼0.1 dex) at constant stellar metallicity; this effect is interpreted in terms of dry merging of passive central galaxies and/or progenitor bias.


2012 ◽  
Vol 758 (1) ◽  
pp. L23 ◽  
Author(s):  
Sarah R. Loebman ◽  
Željko Ivezić ◽  
Thomas R. Quinn ◽  
Fabio Governato ◽  
Alyson M. Brooks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document