Morphology Evolution in Immiscible Polymer Blends during Compounding

Author(s):  
Chang Dae Han

Polymer researchers have had a long-standing interest in understanding the evolution of blend morphology when two (or more) incompatible homopolymers or copolymers are melt blended in mixing equipment. In industry, melt blending is conducted using either an internal (batch) mixer (e.g., a Banbury mixer or a Brabender mixer) or a continuous mixer (e.g., a twin-screw extruder or a Buss kneader). There are many factors that control the evolution of blend morphology during compounding, the five primary ones being (1) blend composition, (2) rheological properties (e.g., viscosity ratio) of the constituent components, (3) mixing temperature, which in turn affects the rheological properties of the constituent components, (4) the duration of mixing in a batch mixer or residence time in a continuous mixer, and (5) rotor speed in a batch mixer or screw speed in a continuous mixer (i.e., local shear rate or shear stress). When two immiscible polymers are compounded in mixing equipment, two types of blend morphology are often observed: dispersed morphology and co-continuous morphology. Numerous investigators have reported on blend morphology of immiscible polymers, and there are too many papers to cite them all here. Some investigators (Han 1976, 1981; Han and Kim 1975; Han and Yu 1972; Nelson et al. 1977; van Oene 1978) examined blend morphology to explain the seemingly very complicated rheological behavior of two-phase polymer blends, and others (Favis and Therrien 1991; He et al. 1997; Ho et al. 1990; Miles and Zurek 1988; Scott and Macosko 1995; Shih 1995; Sundararaj et al. 1992, 1996) investigated blend morphology as affected by processing conditions. Today, it is fairly well understood from experimental studies under what conditions a dispersed morphology or a co-continuous morphology may be formed, and whether a co-continuous morphology is stable, giving rise to an equilibrium morphology, or whether it is an unstable intermediate morphology that eventually is transformed into a dispersed morphology (Lee and Han 1999a, 1999b, 2000). Let us consider the morphology evolution in an immiscible blend consisting of two semicrystalline polymers, A and B, in a compounding machine, and let us assume that the melting point (Tm,A) of polymer A is lower than the melting point (Tm,B) of polymer B.

Polymer ◽  
2002 ◽  
Vol 43 (16) ◽  
pp. 4467-4477 ◽  
Author(s):  
Sandra Steinmann ◽  
Wolfram Gronski ◽  
Christian Friedrich

2000 ◽  
Vol 44 (6) ◽  
pp. 1227-1245 ◽  
Author(s):  
M. Moan ◽  
J. Huitric ◽  
P. Médéric ◽  
J. Jarrin

RSC Advances ◽  
2019 ◽  
Vol 9 (41) ◽  
pp. 23994-24002 ◽  
Author(s):  
Lucheng Qi ◽  
Lei Wu ◽  
Ren He ◽  
Hui Cheng ◽  
Boping Liu ◽  
...  

Blends of polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWPE) with elastomer-olefin block copolymers (OBC) were prepared using an ultrasonic twin-screw extruder, and their mechanical and rheological properties were investigated.


2005 ◽  
Vol 15 (5) ◽  
pp. 314-325 ◽  
Author(s):  
C. Lacoste ◽  
L. Choplin ◽  
P. Cassagnau ◽  
A. Michel

Abstract Polymer melts can be mixed with many monomers, plasticizers, antistatics or foaming additives. Properties of such mixtures can change during blending because of chemical reactions like polymerization or crosslinking. The process may be carried out either in stirred tanks, extruders or in motionless mixers. In this paper we focused on the mixing time and the diffusion time of reagent, plasticizer and polymer thanks to rheological tools, and on the way how rheological properties can be studied during chemical reaction in polymer blending. The concept of rheoreactor and Couette analogy were introduced since we have a reactor on our disposal that can mix solution and measure rheological properties without taking sample. This apparatus appears to be an appreciable tool in complement of internal mixers that are specific to polymer blending. For example, we show the importance of the competition between mixing time and reaction time for reactive systems.


2017 ◽  
Vol 885 ◽  
pp. 36-41 ◽  
Author(s):  
Károly Dobrovszky ◽  
Ferenc Ronkay

Blending polymers is an effective method to develop novel materials, tailoring the properties of the components. However, different morphology structures can be formed during the preparation, which could result in a wide diversity of mechanical and physical properties. The properties of polymer blends are most significantly influenced by the emerging range of phase inversion, which depends on the composition ratio and the viscosity ratio. In this paper various blends were prepared, utilizing polyethylene terephthalate (PET), polystyrene (PS) and two high density polyethylenes (HDPE), which differ in flowability. After preliminary homogenization by twin screw extruder, standard injection moulded specimen were prepared in order to present the effects of phase inversion on tensile properties, shrinkage and burning characteristics in binary polymer blends.


2018 ◽  
Vol 88 ◽  
pp. 248-259 ◽  
Author(s):  
Giuseppe Bianchi ◽  
Stuart Kennedy ◽  
Obadah Zaher ◽  
Savvas A. Tassou ◽  
Jeremy Miller ◽  
...  

Author(s):  
Abdalsalam Ihmoudah ◽  
Mohamed M. Awad ◽  
Mohammad Azizur Rahman ◽  
Stephen D. Butt

Abstract Two-phase flow of gas/yield Pseudoplastic fluids can be found in different industrial applications like the chemical processes, oil industry, and petroleum transport in pipelines. In this study, experimental and numerical investigation of the influence of Rheological properties of non-Newtonians fluids in two-phase flow (gas/yield Pseudoplastic fluids) on slug characteristics in an upward vertical flow were performed. Different concentrations of Xanthan gum solutions (0.05%, 0.10%, and 0.15%, by w/w), which are referred to as non-Newtonian, yield Pseudoplastic behavior used as the working liquids and air as a gas. The experiments were conducted in an open-loop re-circulating system has a total length of 65 m to ensure phase mixing, and authorize flow regime patterns to develop. The vertical pipe has a diameter of 76.3 mm. API-compliant 8-speed rotational viscometer model 800 was used to measure the rheological properties of non-Newtonian fluids. Flow visualization and recording videos were achieved by A high-speed camera to a comparison between behavior of Newtonian and non-Newtonian fluids in the two-phase model. Pressure transducers used to measure high-response pressure. Computational fluid dynamics software (ANSYS fluent 2019 R3) was used for the numerical investigation. The volume of fluid (VOF) model has been chosen for tracking immiscible fluids. CFD simulation results compared to the experimental data. The slug behavior and shape were noticed to be affected by changing the rheological properties of the liquid phase. with increasing XG concentration at the same operations conditions, we found that non-uniform and random distribution of small bubbles due to the effective viscous force of a liquid phase.


Sign in / Sign up

Export Citation Format

Share Document