Primary production in lakes Huron and Michigan: in vitro and in situ comparisons

1988 ◽  
Vol 10 (6) ◽  
pp. 1273-1283 ◽  
Author(s):  
Gary L. Fahnenstiel ◽  
Hunter J. Carrick
Keyword(s):  
2008 ◽  
Vol 5 (2) ◽  
pp. 135 ◽  
Author(s):  
Joanna L. Dixon

Environmental context. The subtropical oceans comprise ~70% of the world’s ocean surface and profoundly affect global biogeochemistry and climate. They are characteristically low-nutrient regions, but, owing to their large extent and often rapid nutrient turnover, may contribute to greater than 30% of the total marine primary production. However, there remains long-standing uncertainty as to what individual or combination of resources, e.g. macro (N, P) and micro (trace metals) nutrients, limit or co-limit marine productivity and thus total carbon fixation in these spatially dominant gyre systems. Abstract. The subtropical oceans are characteristically low-nutrient low-chlorophyll regions, but owing to their geographical dominance and rapid nutrient cycling may contribute >30% of the total marine primary production. The present study investigates the addition of P, Fe, Co and Zn on rates of primary production and heterotrophic bacterial production, through a combination of mesoscale in situ (P, and P + Fe) and in vitro (Co or Zn) bioassay incubation experiments. Results from the bioassay incubation experiments suggest that primary production and chlorophyll a biomass are limited by N and P in this oligotrophic region. However, both were increased further after addition of trace metal micronutrients in the order Fe + Zn ≥ Fe + Co > Fe ≈ Co. In contrast, rates of heterotrophic bacterial production did not appear to be P, or significantly, P + Fe limited, although in situ rates did increase during the first 12 h of mesoscale P fertilisation (which were not mirrored in the mesoscale P + Fe addition). The addition of Co to unfertilised waters increased heterotrophic bacterial production and the numbers of heterotrophic bacteria, Prochlorococcus spp. and Synechococcus spp., suggesting Co limitation. Prochlorococcus spp. were the most abundant autotrophs. The highest increases in both heterotrophic and autotrophic carbon assimilation were shown after in vitro addition of either Co or Zn to mesoscale enriched P + Fe waters, suggesting multiple limitation of microbial growth rates in the subtropical oligotrophic north-east Atlantic.


2016 ◽  
Author(s):  
Hana Jurikova ◽  
Tania Guha ◽  
Osamu Abe ◽  
Fuh-Kwo Shiah ◽  
Chung-Ho Wang ◽  
...  

Abstract. Lakes and reservoirs play an important role in the carbon cycle, and therefore, monitoring their metabolic rates is essential. The triple oxygen isotope anomaly of dissolved O2 [17Δ = ln(1+δ17O) − 0.518×ln(1+δ18O)] offers a new, in situ, perspective on primary production, but is yet to be evaluated in freshwater systems. We investigated the 17Δ together with oxygen-argon ratio (δO2/Ar) in the subtropical Feitsui Reservoir in Taiwan from June 2014 to July 2015. Here, we present the seasonal variations in 17Δ, GP (gross production), NP (net production) and the NP/GP (net to gross ratio) in association with environmental parameters measured. The 17Δ varied with depth and season, with values ranging between 19 and 186 per meg. The 17Δ GP rates were lower from April to September averaging 215±93 mg C m−2 d−1 and higher from October to January averaging 523±66 mg C m−2 d−1. The estimated average annual 17Δ GP was 104 g C m−2 year−1 and the average annual NP was 22 g C m−2 year−1. Overall, the NP/ GP varied slightly between 0.02 and 0.36 and the reservoir was net autotrophic in the mixed layer. Comparisons between 17Δ GP rates and the production rates estimated by in vitro 14C bottle incubation method (14C GP) were consistent on the same order of magnitude, with the 17Δ GP/14C GP ratio of 1±0.8 throughout the study. Although typhoon occurrences were scarce, higher than average 17Δ values and 17Δ GP rates were recorded after typhoon events.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 38-45
Author(s):  
A. N. EFREMOV ◽  
N. V. PLIKINA ◽  
T. ABELI

Rare species are most vulnerable to man-made impacts, due to their biological characteristics or natural resource management. As a rule, the economic impact is associated with the destruction and damage of individual organisms, the destruction or alienation of habitats. Unfortunately, the conservation of habitat integrity is an important protection strategy, which is not always achievable in the implementation of industrial and infrastructural projects. The aim of the publication is to summarize the experience in the field of protection of rare species in the natural habitat (in situ), to evaluate and analyze the possibility of using existing methods in design and survey activities. In this regard, the main methodological approaches to the protection of rare species in the natural habitat (in situ) during the proposed economic activity were reflected. The algorithm suggested by the authors for implementing the in situ project should include a preparatory stage (initial data collection, preliminary risk assessments, technology development, obtaining permitting documentation), the main stage, the content of which is determined by the selected technology and a long monitoring stage, which makes it possible to assess the effectiveness of the taken measures. Among the main risks of in situ technology implementation, the following can be noted: the limited resources of the population that do not allow for the implementation of the procedure without prior reproduction of individuals in situ (in vitro); limited knowledge of the biology of the species; the possibility of invasion; the possibility of crossing for closely related species that сo-exist in the same habitat; social risks and consequences, target species or population may be important for the local population; financial risks during the recovery of the population. The available experience makes it possible to consider the approach to the conservation of rare species in situ as the best available technology that contributes to reducing negative environmental risks.


Sign in / Sign up

Export Citation Format

Share Document