Sink strength of citrus rootstocks under water deficit

2021 ◽  
Author(s):  
Simone F da Silva ◽  
Marcela T Miranda ◽  
Vladimir E Costa ◽  
Eduardo C Machado ◽  
Rafael V Ribeiro

Abstract Carbon allocation between source and sink organs determines plant growth and is influenced by environmental conditions. Under water deficit, plant growth is inhibited before photosynthesis and shoot growth tends to be more sensitive than root growth. However, the modulation of source-sink relationship by rootstocks remain unsolved in citrus trees under water deficit. Citrus plants grafted on Rangpur lime are drought tolerant, which may be related to a fine coordination of the source-sink relationship for maintaining root growth. Here, we followed 13C allocation and evaluated physiological responses and growth of Valencia orange trees grafted on three citrus rootstocks (Rangpur lime, Swingle citrumelo and Sunki mandarin) under water deficit. As compared to plants on Swingle and Sunki rootstocks, ones grafted on Rangpur lime showed higher stomatal sensitivity to the initial variation of water availability and less accumulation of non-structural carbohydrates in roots under water deficit. High 13C allocation found in Rangpur lime roots indicates this rootstock has high sink demand associated with high root growth under water deficit. Our data suggest that Rangpur lime rootstock used photoassimilates as sources of energy and carbon skeletons for growing under drought, which is likely related to increases in root respiration. Taken together, our data revealed that carbon supply by leaves and delivery to roots are critical for maintaining root growth and improving drought tolerance, with citrus rootstocks showing differential sink strength under water deficit.

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 926
Author(s):  
Heba M. Ibrahim ◽  
Basharat Ali ◽  
Ali El-Keblawy ◽  
Taoufik Ksiksi ◽  
Mohamed A. El-Esawi ◽  
...  

Trade-offs between growth and reproduction in soybean require resource availability manipulations. Decapitation and reducing sink strength through deflowering can affect the source–sink ratio that affects plant growth, development, and yield. The current study assesses the effect of decapitation (Decap) and removal of the two lowest racemes (R2LR) and their combination on growth, flowering, and yield capacity of soybean through controlling the source–sink ratio and inducing the “stay-green” phenotype. Two field experiments were conducted during 2018 and 2019 in the Agronomy Farm located at Mansoura University, Egypt. Decapitation was done at the V4 stage (35 days after sowing, DAS), during which four nodes on the main stem had fully developed leaves beginning with the unifoliolate nodes, whereas R2LR was performed at the R2 stage (50 DAS), during which the plants had one open flower at one of the two uppermost nodes on the main stem. Results indicated that Decap, R2LR, and their combination significantly increased seed yield per plant through increasing plant growth and flowering and improving biochemical attributes. The combination between Decap and R2LR was generally more effective in positively modulating plant vegetative, reproductive, and physiological capacity than either Decap or R2LR alone. Moreover, the number of branches as well as pods/plant and IAA content responded positively to Decap, whereas net assimilation rate, seed growth rate, number of flowers/node, and cytokinins content responded positively to R2LR. Decap and R2LR were interpreted in light of their effects on inducing the “stay-green” phenotype and altering the source–sink ratio. Based on the findings, it can be concluded that concealing the apical dominance in conjunction with reducing the sink strength through guided raceme removal would be beneficial for the reproductive potential in soybean.


2015 ◽  
Vol 42 (12) ◽  
pp. 1116 ◽  
Author(s):  
Benoît Pallas ◽  
Angélique Christophe

The relationships between whole-plant growth and morphogenetic processes under abiotic stresses are still partly unknown. Whole-plant biomass growth can be decreased by many abiotic stresses, including water deficit and shading. Two experiments were performed on potted plants of one grapevine cultivar (Vitis vinifera L. cv. Syrah) subjected to watering and shading treatments. Under water stress, plants reduced their primary and secondary axis leaf production rate, whereas secondary axis budburst was relatively unaffected. Individual leaf area was reduced and a strong decrease in leaf expansion rate was observed. Under shading, primary axis organogenesis was maintained, both secondary axis budburst rate and phytomer appearance rate were decreased, and individual leaf area slightly increased. Specific leaf area did not change under soil water deficit, whereas it increased under shading. These results confirm the existence of dynamic changes in organ sink strength and biomass allocation patterns to favour plant leaf area growth under shading, and to reduce plant leaf area and water losses by transpiration under water stress. From a modelling point of view, this study shows that functional structural models based on a C balance are not fully relevant for simulating plant growth under abiotic constraints if they do not include non-trophic relationships (hormonal signalling or plant hydraulic properties) that modify organ sink strength according to abiotic constraints.


2002 ◽  
Vol 32 (10) ◽  
pp. 1838-1848 ◽  
Author(s):  
André Lacointe ◽  
J G Isebrands ◽  
George E Host

To improve source–sink relationship based carbon-allocation models, the basic proportional model was extended to account for a well-known effect of individual source to sink distances: among different sinks of similar characteristics, the more distant from the source, the lower the allocation coefficient. This was achieved through multiplication of the sink strength value by a coefficient that is proportional to a decreasing, simple function of distance, f; the power form was chosen for both simplicity and theoretical reasons. The resulting model was parameterized and evaluated on the empirical allocation matrix of the ECOPHYS model, after grouping together several individual, small sinks of similar nature and close location to remove any phyllotaxy-related bias. Both goodness of fit and predictive value were significantly improved compared with the basic proportional model (f = constant). The f-extended model yielded even better results if segments of different nature or age on the source to sink pathway were assigned different weights in the expression of distance, whereas the default expression of f, with an exponent of –1 and no additive constant, was optimal with no further parameter required. Thus, only 7 parameters (3 for pathway segment weights and 4 for sink strength values) were sufficient to retrieve the original 68 independent experimental allocation coefficients with a reasonable degree of accuracy. Pathway segment weights likely reflect both intrinsic transport pathway properties and situation within the plant architecture; this is discussed in relation to the possibilities of generalization and practical use of the model.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1655-1658 ◽  
Author(s):  
Luis Pozo ◽  
Ana Redondo ◽  
Ulrich Hartmond ◽  
Walter J. Kender ◽  
Jacqueline K. Burns

Two formulations of the plant growth regulator dikegulac (2,3:4,6-di-O-isopro-pylidene-α-L-xylo-2-hexulofuranosoic acid), consisting of dikegulac-sodium (Atrimmec) or dikegulac:ascorbic acid (1:1) (DAA), as well as 5-chloro-3-methyl-4-nitro-pyrazole at 200 mg·L-1, were applied as foliar sprays to `Hamlin' and `Valencia' orange trees (Citrus sinensis L. Osbeck) at two dates during the harvest season for each cultivar (11 Nov. and 10 Jan. for `Hamlin', 22 Mar. and 25 May for `Valencia'). Fruit detachment force was evaluated 10 days after application, whereas cumulative leaf abscission was monitored up to 60 days after application. In both cultivars, Atrimmec and DAA at 3,000 mg·L-1 induced moderate fruit loosening when applied at the earlier application date, but fruit loosening improved when applied at the later application date. In `Hamlin', both formulations caused higher leaf abscission when applied at the later date. DAA applications resulted in low leaf loss in `Valencia' regardless of application time, whereas Atrimmec caused unacceptably high leaf loss at either application date. No differences in internal fruit quality were found as a result of any abscission material treatment. The results indicate that DAA could be a promising option to induce fruit loosening in late harvested `Valencia' orange trees with minimal undesirable side effects.


2021 ◽  
Author(s):  
Nadia S Arias ◽  
Fabián G Scholz ◽  
Guillermo Goldstein ◽  
Sandra J Bucci

Abstract Low temperatures and drought are the main environmental factors affecting plant growth and productivity across most of the terrestrial biomes. The objective of this study was to analyze the effects of water deficits before the onset of low temperatures in winter to enhance freezing resistance in olive trees. The study was carried out near the coast of Chubut, Argentina. Plants of five olive cultivars were grown out-door in pots and exposed to different water deficit treatments. We assessed leaf water relations, ice nucleation temperature (INT), cell damage (LT50), plant growth and leaf nitrogen content during summer and winter in all cultivars and across water deficit treatments. Leaf INT and LT50 decreased significantly from summer to winter within each cultivar and between treatments. We observed a trade-off between resources allocation to freezing resistance and vegetative growth, such that an improvement in resistance to sub-zero temperatures was associated to lower growth in tree height. Water deficit applied during summer increased the amount of osmotically active solutes and decreased the leaf water potentials. This type of legacy effects persists during the winter after the water deficit even when treatment was removed, because of natural rainfalls.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhua Shan ◽  
Min Lv ◽  
Wengang Zuo ◽  
Zehui Tang ◽  
Cheng Ding ◽  
...  

AbstractThe most important measures for salt-affected mudflat soil reclamation are to reduce salinity and to increase soil organic carbon (OC) content and thus soil fertility. Salinity reduction is often accomplished through costly freshwater irrigation by special engineering measures. Whether fertility enhancement only through one-off application of a great amount of OC can improve soil properties and promote plant growth in salt-affected mudflat soil remains unclear. Therefore, the objective of our indoor pot experiment was to study the effects of OC amendment at 0, 0.5%, 1.0%, 1.5%, and 2.5%, calculated from carbon content, by one-off application of sewage sludge on soil properties, rice yield, and root growth in salt-affected mudflat soil under waterlogged conditions. The results showed that the application of sewage sludge promoted soil fertility by reducing soil pH and increasing content of OC, nitrogen and phosphorus in salt-affected mudflat soil, while soil electric conductivity (EC) increased with increasing sewage sludge (SS) application rates under waterlogged conditions. In this study, the rice growth was not inhibited by the highest EC of 4.43 dS m−1 even at high doses of SS application. The SS application increased yield of rice, promoted root growth, enhanced root activity and root flux activity, and increased the soluble sugar and amino acid content in the bleeding sap of rice plants at the tillering, jointing, and maturity stages. In conclusion, fertility enhancement through organic carbon amendment can “offset” the adverse effects of increased salinity and promote plant growth in salt-affected mudflat soil under waterlogged conditions.


2020 ◽  
Vol 11 (12) ◽  
pp. 1173-1177
Author(s):  
A. Ibrahim ◽  
M. Gad

Sign in / Sign up

Export Citation Format

Share Document