scholarly journals First Report of Pestalotiopsis chamaeropis Causing Leaf Spot on Eurya nitida in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Ling Qiu ◽  
Jingwen Liu ◽  
Weigang Kuang ◽  
Kai Zhang ◽  
Jian Ma

Eurya nitida Korth. belonging to the family Theaceae is an evergreen shrub or small tree and is usually used as a very important ornamental tree and nectar source plant (Khan et al. 1992; Ma et al. 2013). It also has high medicinal values with the treatment of rheumatoid arthritis, diarrhea, innominate inflammatory of unknown origin, ulcer fester and traumatic hemorrhage (Park et al. 2004). In October 2020, symptoms of leaf spot were observed on E. nitida in Meiling Scenic Spot of Nanchang, Jiangxi Province, China (28.78°N, 115.83°E). We surveyed about 300 m2 of the mountain area which holds about 100 trees of E. nitida scattered naturally near the waterside or regularly planted on either side of the mountain road. Most of the infected plants were observed from humid environments or waterside, with 15~20% disease incidence, and the disease severity on a plant basis was determined to be 25% to 30%, depending on the field. Sixty infected leaves were collected from 20 individual trees which have the same symptoms. The symptoms on infected leaves appeared as tiny circular spots that gradually enlarged into brown circular necrotic lesions and then became a light gray with brown borders and black acervuli at the later stages of the disease. Ten leaves of infected tissues randomly selected from collected sixty infected leaves were cut into 4 mm2 pieces, and surface disinfected with 75% ethanol for 30s and 1% hypochlorite for 1 min, rinsed three times with sterile water, plated on potato dextrose agar (PDA), and incubated at 25°C in the dark for 5 to 7 days. Five isolates with similar morphological characteristics were obtained. Colonies developed copious white aerial mycelium covering the entire Petri dish area after 7 to 10 days. Conidiogenous cells were discrete, hyaline, and smooth. Conidia were fusiform, ellipsoid, 4-euseptate and ranged from 21.86 to 29.80 × 5.95 to 9.80 µm. Apical cells were hyaline with 2 to 3 unbranched, tubular apical appendages (mostly 3); basal cell was hyaline, obconic with a truncate base; three median cells doliiform to subcylindrical, brown. The morphological characteristics of all isolates matched features described for Pestalotiopsis chamaeropis Maharachch., K.D. Hyde & Crous (Maharachchikumbura et al. 2014). Two single representatives (JAUCC L001-1 and JAUCC L002) were used for molecular identification, which were verified based on the amplification of DNA sequences of internal transcribed spacer region (ITS) gene and translation elongation factor 1 alpha (TEF1-α) gene, using the primers ITS4/ITS5 (White et al. 1990) and EF1-526F/EF1-1567R (Rehner and Buckley 2005), respectively. The sequenced loci (GenBank accession nos. ITS: MW845761, MW828589 and TEF1-α: MW838967, MZ292464) exhibited over 99% homology with P. chamaeropis strain CBS 186.71 in GenBank (GenBank accession nos. KM199326 and KM199473), confirming the morphological identification. Phylogenetic reconstruction was generated by using the maximum likelihood (ML) method based on the Kimura 2-parameter model, with bootstrap nodal support for 1000 pseudoreplicates in MEGA software, version 7.0. The result showed that our isolates were clustered together with P. chamaeropis at 99% bootstrap values. Based on morphological characteristics and molecular phylogenetic analysis, the isolates were identified as P. chamaeropis. The pathogenicity of one representative isolate (JAUCC L001-1) was tested indoor by inoculating the top leaves of six healthy E. nitida plants. Three plants with three leaves were punctured with flamed needles and sprayed with a conidial suspension (1 × 106 conidia/ml), and other three plants wounded inoculated with mycelial plugs (5 × 5 mm3). Mock inoculations were used as controls with sterile water and non-infested PDA plugs on three leaves each. Treated plants were incubated in an artificial climate box with high relative humidity at 25 °C. After 10 days, symptoms on all wounded inoculated plants were similar to those previously observed with distinct tiny circular spots, whereas no symptoms appeared on inoculated plants. Pestalotiopsis chamaeropis was re-isolated from symptomatic tissues but not from the mock-inoculated plants, and its identity was confirmed by morphological characteristics and molecular data, which confirmed Koch's postulates. Pestalotiopsis chamaeropis was previously reported as the causal agent of leaf blight diseases on Camellia sinensis in China (Chen et al. 2020), Pieris japonica in Japan (Nozawa et al. 2019) and Prostanthera rotundifolia in Australia (Azin et al. 2015). To our knowledge, this is the first report of P. chamaeropis causing a leaf spot disease on E. nitida in China, and this disease may be more widespread than the sampled location. This finds is beneficial to the better protection of E. nitida, a widespread medicinal and nectar source plant with high economic value.

Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 287-287 ◽  
Author(s):  
D. J. Vakalounakis ◽  
E. A. Markakis

During the 2011 to 2012 crop season, a severe leaf spot disease of cucumber (Cucumis sativus) cv. Cadiz was noticed on crops in some greenhouses in the Goudouras area, Lasithi, Crete, Greece. Symptoms appeared in late winter, mainly on the leaves of the middle and upper part of the plants. Initially, small necrotic pinpoint lesions with white centers, surrounded by chlorotic halos, 1 to 3 mm in diameter, appeared on the upper leaf surfaces, and these progressively enlarged to spots that could coalesce to form nearly circular lesions up to 2 cm or more in diameter. Stemphylium-like fructifications appeared on necrotic tissue of older lesions. Severely affected leaves became chlorotic and died. No other part of the plant was affected. Small tissue pieces from the edges of lesions were surface disinfected in 0.5% NaClO for 5 min, rinsed in sterile distilled water, plated on acidified potato dextrose agar and incubated at 22 ± 0.5°C with a 12-h photoperiod. Stemphylium sp. was consistently isolated from diseased samples. Colonies showed a typical septate mycelium with the young hyphae subhyaline and gradually became greyish green to dark brown with age. Conidiophores were subhyaline to light brown, 3- to 10-septate, up to 200 μm in length, and 4 to 7 μm in width, with apical cell slightly to distinctly swollen, bearing a single spore at the apex. Conidia were muriform, mostly oblong to ovoid, but occasionally nearly globose, subhyline to variant shades of brown, mostly constricted at the median septum, 22.6 ± 6.22 (11.9 to 36.9) μm in length, and 15.1 ± 2.85 (8.3 to 22.6) μm in width, with 1 to 8 transverse and 0 to 5 longitudinal septa. DNA from a representative single-spore isolate was extracted and the internal transcribed spacer region (ITS) of ribosomal DNA (rDNA) was amplified using the universal primers ITS5 and ITS4. The PCR product was sequenced and deposited in GenBank (Accession No. JX481911). On the basis of morphological characteristics (3) and a BLAST search with 100% identity to the published ITS sequence of a S. solani isolate in GenBank (EF0767501), the fungus was identified as S. solani. Pathogenicity tests were performed by spraying a conidial suspension (105 conidia ml–1) on healthy cucumber (cv. Knossos), melon (C. melo, cv. Galia), watermelon (Citrullus lanatus cv. Crimson sweet), pumpkin (Cucurbita pepo, cv. Rigas), and sponge gourd (Luffa aegyptiaca, local variety) plants, at the 5-true-leaf stage. Disease symptoms appeared on cucumber and melon only, which were similar to those observed under natural infection conditions on cucumber. S. solani was consistently reisolated from artificially infected cucumber and melon tissues, thus confirming Koch's postulates. The pathogenicity test was repeated with similar results. In 1918, a report of a Stemphylium leaf spot of cucumber in Indiana and Ohio was attributed to Stemphylium cucurbitacearum Osner (4), but that pathogen has since been reclassified as Leandria momordicae Rangel (2). That disease was later reported from Florida (1) and net spot was suggested as a common name for that disease. For the disease reported here, we suggest the name Stemphylium leaf spot. This is the first report of a disease of cucumber caused by a species of Stemphylium. References: (1) C. H. Blazquez. Plant Dis. 67:534, 1983. (2) P. Holliday. Page 243 in: A Dictionary of Plant Pathology. Cambridge University Press, Cambridge, UK, 1998. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) G. A. Osner. J. Agric. Res. 13:295, 1918.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 911-911 ◽  
Author(s):  
J. H. Park ◽  
S. E. Cho ◽  
K. S. Han ◽  
H. D. Shin

Rudbeckia hirta L. var. pulcherrima Farw. (synonym R. bicolor Nutt.), known as the black-eyed Susan, is a flowering plant belonging to the family Asteraceae. The plant is native to North America and was introduced to Korea for ornamental purposes in the 1950s. In July 2011, a previously unknown leaf spot was first observed on the plants in a public garden in Namyangju, Korea. Leaf spot symptoms developed from lower leaves as small, blackish brown lesions, which enlarged to 6 mm in diameter. In the later stages of disease development, each lesion was usually surrounded with a yellow halo, detracting from the beauty of the green leaves of the plant. A number of black pycnidia were present in diseased leaf tissue. Later, the disease was observed in several locations in Korea, including Pyeongchang, Hoengseong, and Yangpyeong. Voucher specimens were deposited at the Korea University Herbarium (KUS-F25894 and KUS-F26180). An isolate was obtained from KUS-F26180 and deposited at the Korean Agricultural Culture Collection (Accession No. KACC46694). Pycnidia were amphigenous, but mostly hypogenous, scattered, dark brown-to-rusty brown, globose, embedded in host tissue or partly erumpent, 50 to 80 μm in diameter, with ostioles 15 to 25 μm in diameter. Conidia were substraight to mildly curved, guttulate, hyaline, 25 to 50 × 1.5 to 2.5 μm, and one- to three-septate. Based on the morphological characteristics, the fungus was consistent with Septoria rudbeckiae Ellis & Halst. (1,3,4). Morphological identification of the fungus was confirmed by molecular data. Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA.). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 528 bp was deposited in GenBank (Accession No. JQ677043). A BLAST search showed that there was no matching sequence of S. rudbeckiae; therefore, this is the first ITS sequence of the species submitted to GenBank. The ITS sequence showed >99% similarity with those of many Septoria species, indicating their close phylogenetic relationship. Pathogenicity was tested by spraying leaves of three potted young plants with a conidial suspension (2 × 105 conidia/ml), which was harvested from a 4-week-old culture on potato dextrose agar. Control leaves were sprayed with sterile water. The plants were covered with plastic bags to maintain 100% relative humidity (RH) for the first 24 h. Plants were then maintained in a greenhouse (22 to 28°C and 70 to 80% RH). After 5 days, leaf spot symptoms identical to those observed in the field started to develop on the leaves inoculated with the fungus. No symptoms were observed on control plants. S. rudbeckiae was reisolated from the lesions of inoculated plants, confirming Koch's postulates. A leaf spot disease associated with S. rudbeckiae has been reported on several species of Rudbeckia in the United States, Romania, and Bulgaria (1–4). To our knowledge, this is the first report of leaf spot on R. hirta var. pulcherrima caused by S. rudbeckiae in Korea. References: (1) J. B. Ellis and B. D. Halsted. J. Mycol. 6:33, 1890. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ February 2, 2012. (3) E. Radulescu et al. Septoriozele din Romania. Ed. Acad. Rep. Soc. Romania, Bucuresti, Romania, 1973. (4) S. G. Vanev et al. Fungi Bulgaricae 3:1, 1997.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ali Chai ◽  
Qian Zhao ◽  
Yanxia Shi ◽  
Xuewen Xie ◽  
Lei Li ◽  
...  

Okra [Abelmoschus esculentus (L.) Moench], which belongs to the family Malvaceae, is widely grown in the tropics, sub-tropics and warmer areas of the temperate zones for its immature seed pods which are consumed as a vegetable. In China, okra pods are consumed as not only vegetables but also as a traditional medicine to cure dental diseases and gastric ulcers. During September 2018 to June 2019, extensive spots on okra leaves were observed in several commercial fields (approximately 2.0 hectares), with disease incidence of approximately 25%~50% in the Yanqing District (115°98′E, 40°46′N) of Beijing, China. Symptoms of the disease initially appeared as small pale brown spots with yellow haloes. As the disease progressed, some spots gradually coalesced, forming larger irregular dark brown lesions. The centers of the lesions became grayish white. A total of 13 small fragments (3 to 5 mm) excised from the lesion margins were sterilized in 1% sodium hypochlorite (NaClO) for 1 min, followed by three washes with sterile distilled water, and then placed on potato dextrose agar (PDA) and incubated at 25°C in the dark for 5 days. In total, 21 cultures were obtained and purified by single-spore subcultures on PDA for morphological identification. The colonies on PDA were whitish to gray, with cottony aerial mycelium. Conidiophores were fasciculate, olivaceous brown, straight or geniculate, uniform in width, multiseptate, and ranged from 286/span> to 711 μm (avg. = 578 μm, n = 50). Conidia were hyaline, slightly curved or straight, needle shaped, truncate at the base, and terminal at the tip, 3–17-septate, and measuring 52 to 231 μm (avg. = 182 μm, n = 50). The morphological features were consistent with Cercospora cf. flagellaris Ellis & G. Martin (Groenewald et al. 2013). Pathogenicity tests were conducted on potted okra plants cv. ‘Jiayuan’. Twenty four healthy okra plants at the true leaf stage were sprayed with conidial suspensions (1 × 106 conidia/mL), incubated at a glass cabinet maintained at 25°C and 90% relative humidity (RH). To each leaf approximately 10 mL of conidial suspension was applied. Plants sprayed with water were used as controls. Seven days later, dark brown spot, which were identical to those observed in the fields, were observed on inoculated leaves, whereas the control plants remained healthy. C. cf. flagellaris was reisolated from symptomatic leaves, confirming Koch’s Postulates. Genomic DNA was extracted from fungal mycelium using the Plant Genomic DNA Kit (Tiangen Biotech Co. Ltd., Beijing, China). The nuclear ribosomal internal transcribed spacer region (ITS), and portions of the actin (ACT), histone H3 (HIS3), and translation elongation factor 1-α (TEF1) genes were amplified using primers ITS1/ITS4 (Groenewald et al. 2013), ACT-512F/ACT-783R (Carbone & Kohn 1999), CYLH3F/CYLH3R (Crous et al. 2006), and EF1-728F/EF1-986R (Carbone & Kohn 1999). The resulting 542 bp ITS, 226 bp ACT, 410 bp HIS3 and 306 bp TEF1 sequences of isolate QK14091813 were deposited in GeneBank (Accession nos. MT949700, MT949701, MT949702 and MT949703, respectively). The ITS, ACT, HIS3 and TEF1 sequences shared 99.42% to 100% identities to previously published sequences of C. cf. flagellaris (Accession nos. MN633275 for ITS, MF680960 for ACT, MK991295 for HIS3, and MK991292.1 for TEF1, respectively). Multi-locus phylogenetic analyses (ITS, ACT, HIS3, and TEF1) were performed by neighbor-joining method using MEGA 7.0. The resulting trees showed that C. cf. flagellaris isolate QK14091813 (this study) nested within the clade that includes other isolates of C. cf. flagellaris with a 99% confidence level. To our knowledge, this is the first report of C. cf. flagellaris causing leaf spot on okra (Farr and Rossman 2020). The pathogen has a worldwide distribution and an unusually broad host range, which can be of great significance, and the plant protection policy of priority to prevention and synthetical prevention should be followed.


Plant Disease ◽  
2022 ◽  
Author(s):  
Xiang Xie ◽  
Shiqiang Zhang ◽  
Qingjie Yu ◽  
Xinye Li ◽  
Yongsheng Liu ◽  
...  

Camellia oleifera, a major tree species for producing edible oil, is originated in China. Its oil is also called ‘‘eastern olive oil’’ with high economic value due to richness in a variety of healthy fatty acids (Lin et al. 218). However, leaves are susceptible to leaf spot disease (Zhu et al. 2014). In May 2021, we found circular to irregular reddish-brown lesions, 4-11 mm in diameter, near the leaf veins or leaf edges on 30%-50% leaves of 1/3 oil tea trees in a garden of Hefei City, Anhui Province, China (East longitude 117.27, North latitude 31.86) (Figure S1 A). To isolate the causal agents, symptomatic leaves were cut from the junction of diseased and healthy tissues (5X5 mm) and treated with 70 % alcohol for 30 secs and 1 % NaClO for 5 min, and subsequently inoculated onto PDA medium for culture. After 3 days, hyphal tips were transferred to PDA. Eventually, five isolates were obtained. Then the isolates were cultured on PDA at 25°C for 7 days and the mycelia appeared yellow with a white edge and secreted a large amount of orange-red material to the PDA (Figure S1 B and C). Twenty days later, the mycelium appeared reddish-brown, and sub-circular (3-10 mm) raised white or yellow mycelium was commonly seen on the Petri dish, and black particles were occasionally seen. Meanwhile, the colonies on the PDA produced abundant conidia. Microscopy revealed that conidia were globular to pyriform, dark, verrucose, and multicellular with 14.2 to 25.3 μm (=19.34 μm, n = 30) diameter (Figure S1 D). The morphological characteristics of mycelial and conidia from these isolates are similar to that of Epicoccum layuense (Chen et al.2020). To further determine the species classification of the isolates, DNA was extracted from 7-day-old mycelia cultures and the PCR-amplified fragments were sequenced for internal transcribed spacer (ITS), beta-tubulin and 28S large subunit ribosomal RNA (LSU) gene regions ITS1/ITS4, Bt2a/Bt2b and LR0R/LR5, followed by sequencing and molecular phylogenetic analysis of the sequences analysis (White et al. 1990; Glass and Donaldson 1995; Vilgalys and Hester 1990). Sequence analysis revealed that ITS, beta-tubulin, and LSU divided these isolates into two groups. The isolates AAU-NCY1 and AAU-NCY2, representing the first group (AAU-NCY1 and AAU-NCY5) and the second group (AAU-NCY2, AAU-NCY3 and AAU-NCY4), respectively, were used for further studies. Based on BLASTn analysis, the ITS sequences of AAU-NCY1 (MZ477250) and AAU-NCY2 (MZ477251) showed 100 and 99.6% identity with E. layuense accessions MN396393 and KY742108, respectively. And, the beta-tubulin sequences (MZ552310; MZ552311) showed 99.03 and 99.35% identity with E. layuense accessions MN397247 and MN397248, respectively. Consistently, their LSU (MZ477254; MZ477255) showed 99.88 and 99.77% identity with E. layuense accessions MN328724 and MN396395, respectively. Phylogenetic trees were built by maximum likelihood method (1,000 replicates) using MEGA v.6.0 based on the concatenated sequences of ITS, beta-tubulin and LSU (Figure S2). Phylogenetic tree analysis confirmed that AAU-NCY1 and AAU-NCY2 are closely clustered with E. layuense stains (Figure S2). To test the pathogenicity, conidial suspension of AAU-NCY2 (106 spores/mL) was prepared and sterile water was used as the control. Twelve healthy leaves (six for each treatment) on C. oleifera tree were punched with sterile needle (0.8-1mm), the sterile water or spore suspension was added dropwise at the pinhole respectively (Figure S1 E and F). The experiment was repeated three times. By ten-day post inoculation, the leaves infected by the conidia gradually developed reddish-brown necrotic spots that were similar to those observed in the garden, while the control leaves remained asymptomatic (Figure S1 G and H). DNA sequences derived from the strain re-isolated from the infected leaves was identical to that of the original strain. E. layuense has been reported to cause leaf spot on C. sinensis (Chen et al. 2020), and similar pathogenic phenotypes were reported on Weigela florida (Tian et al. 2021) and Prunus x yedoensis Matsumura in Korea ( Han et al. 2021). To our knowledge, this is the first report of E. layuense causing leaf spot on C. oleifera in Hefei, China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yue Lian Liu ◽  
Jian Rong Tang ◽  
Ya Li ◽  
Hong Kai Zhou

Wild rice (Oryza rufipogon) has been widely studied and cultivated in China in recent years due to its antioxidant activities and health-promoting effects. In December 2018, leaf spot disease on wild rice (O. rufipogon cv. Haihong-12) was observed in Zhanjiang (20.93 N, 109.79 E), China. The early symptom was small purple-brown lesions on the leaves. Then, the once-localized lesions coalesced into a larger lesion with a tan to brown necrotic center surrounded by a chlorotic halo. The diseased leaves eventually died. Disease incidence was higher than 30%. Twenty diseased leaves were collected from the fields. The margin of diseased tissues was cut into 2 × 2 mm2 pieces, surface-disinfected with 75% ethanol for 30 s and 2% sodium hypochlorite for 60 s, and then rinsed three times with sterile water before isolation. The tissues were plated on potato dextrose agar (PDA) medium and incubated at 28 °C in the dark for 4 days. Pure cultures were produced by transferring hyphal tips to new PDA plates. Fifteen isolates were obtained. Two isolates (OrL-1 and OrL-2) were subjected to further morphological and molecular studies. The colonies of OrL-1 and OrL-1 on PDA were initially light gray, but it became dark gray with age. Conidiophores were single, straight to flexuous, multiseptate, and brown. Conidia were oblong, slightly curved, and light brown with four to nine septa, and measured 35.2–120.3 µm × 10.3–22.5 µm (n = 30). The morphological characteristics of OrL-1 and OrL-2 were consistent with the description on Bipolaris oryzae (Breda de Haan) Shoemaker (Manamgoda et al. 2014). The ITS region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and translation elongation factor (EF-1α) were amplified using primers ITS1/ITS4, GDF1gpp1/GDR1 gdp2 (Berbee et al. 1999), and EF-1α-F/EF-1α-R EF-1/EF-2 (O’Donnell 2000), respectively. Amplicons of OrL-1 and OrL-2 were sequenced and submitted to GenBank (accession nos. MN880261 and MN880262, MT027091 and MT027092, and MT027093 and MT027094). The sequences of the two isolates were 99.83%–100% identical to that of B. oryzae (accession nos. MF490854,MF490831,MF490810) in accordance with BLAST analysis. A phylogenetic tree was generated on the basis of concatenated data from the sequences of ITS, GAPDH, and EF-1α via Maximum Likelihood method, which clustered OrL-1 and OrL-2 with B. oryzae. The two isolates were determined as B. oryzae by combining morphological and molecular characteristics. Pathogenicity test was performed on OrL-1 in a greenhouse at 24 °C to 30 °C with 80% relative humidity. Rice (cv. Haihong-12) with 3 leaves was grown in 10 pots, with approximately 50 plants per pot. Five pots were inoculated by spraying a spore suspension (105 spores/mL) onto leaves until runoff occurred, and five pots were sprayed with sterile water and used as controls. The test was conducted three times. Disease symptoms were observed on leaves after 10 days, but the controls remained healthy. The morphological characteristics and ITS sequences of the fungal isolates re-isolated from the diseased leaves were identical to those of B. oryzae. B. oryzae has been confirmed to cause leaf spot on Oryza sativa (Barnwal et al. 2013), but as an endophyte has been reported in O. rufipogon (Wang et al. 2015).. Thus, this study is the first report of B. oryzae causing leaf spot in O. rufipogon in China. This disease has become a risk for cultivated wild rice with the expansion of cultivation areas. Thus, vigilance is required.


Plant Disease ◽  
2021 ◽  
Author(s):  
Manlin Xu ◽  
Xia Zhang ◽  
Jing Yu ◽  
zhiqing Guo ◽  
Ying Li ◽  
...  

Peanut (Arachis hypogaea L.) is one of the most economically important crops as an important source of edible oil and protein. In August 2020, circular to oval-shaped brown leaf spots (2-6 mm in diameter) with well-defined borders surrounded by a yellow margin were observed on peanut plant leaves in Laixi City, Shandong Province, China. Symptomatic plants randomly distributed in the field, the incidence was approximately 5%. Leave samples were collected consisted of diseased tissue and the adjacent healthy tissue. The samples were dipped in a 70% (v/v) ethanol solution for 30 s and then soaked in a 0.1% (w/v) mercuric chloride solution for 60 s. The surface-sterilized tissues were then rinsed three times with sterile distilled water, dried and placed on Czapek Dox agar supplemented with 100 μg/ml of chloramphenicol. The cultures were incubated in darkness at 25 °C for 3–5 days. Fungal colonies were initially white and radial, turning to orange-brown in color, with abundant aerial mycelia. Macroconidia were abundant, 4 to 7 septate, with a dorsiventral curvature, and were 3.3–4.5 × 18.5–38.1 μm (n=100) in size; microconidia were absent; chlamydospores were produced in chains or clumps, ellipsoidal to subglobose, and thick walled. The morphological characteristics of the conidia were consistent with those of Fusarium spp. To identify the fungus, an EasyPure Genomic DNA Kit (TransGEN, Beijing, China) was used to extract the total genomic DNA from mycelia. The internal transcribed spacer region (ITS rDNA) and the translation elongation factor 1-α gene (TEF1) were amplified with primers ITS1/ITS4 (White et al. 1990) and EF1/EF2 (O’Donnell et al. 1998), respectively. Based on BLAST analysis, sequences of ITS (MT928727) and TEF1 (MT952337) showed 99.64% and 100% similarity to the ITS (MT939248.1), TEF1 (GQ505636.1) of F. ipomoeae isolates. Sequence analysis confirmed that the fungus isolated from the infected peanut was F. ipomoeae (Xia et al. 2019). The pathogenicity of the fungus was tested in the greenhouse. Twenty two-week-old peanut seedlings (cv. Huayu20) grown in 20-cm pots (containing autoclaved soil) were sprayed with a conidial suspension (105 ml−1) from a 15-day-old culture. Control plants were sprayed with distilled water. The experiment was conducted as a randomized complete block design, and placed at 25 °C under a 12-h photoperiod with 90% humidity. Symptoms similar to those in the field were observed on leaves treated with the conidial suspension ten days after inoculation, but not on control plants. F. ipomoeae was re-isolated from symptomatic leaves but not from the control plants. Reisolation of F. ipomoeae from inoculated plants fulfilled Koch's postulates. To our knowledge, this is the first report of F. ipomoeae causing peanut leaf spot in China. Our report indicates the potential spread of this pathogen in China and a systematic survey is required to develop effective disease management strategies.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 282-282
Author(s):  
K. Vrandečić ◽  
J. Ćosić ◽  
D. Jurković ◽  
I. Stanković ◽  
A. Vučurović ◽  
...  

Lavandula × intermedia Emeric ex Loiseleur, commonly known as lavandin, is an aromatic and medicinal perennial shrub widely and traditionally grown in Croatia. The lavandin essential oil is primarily used in perfumery and cosmetic industries, but also possesses anti-inflammatory, sedative, and antibacterial properties. In June 2012, severe foliar and stem symptoms were observed on approximately 40% of plants growing in a commercial lavandin crop in the locality of Banovo Brdo, Republic of Croatia. Initial symptoms on lower leaves included numerous, small, oval to irregular, grayish brown lesions with a slightly darker brown margin of necrotic tissue. Further development of the disease resulted in yellowing and necrosis of the infected leaves followed by premature defoliation. Similar necrotic oval-shaped lesions were observed on stems as well. The lesions contained numerous, dark, sub-globose pycnidia that were immersed in the necrotic tissue or partly erumpent. Small pieces of infected internal tissues were superficially disinfected with 50% commercial bleach (4% NaOCl) and placed on potato dextrose agar (PDA). A total of 10 isolates from leaves and five from stems of lavandin formed a slow-growing, dark, circular colonies with raised center that produced pycnidia at 23°C, under 12 h of fluorescent light per day. All 15 recovered isolates formed uniform hyaline, elongate, straight or slightly curved conidia with 3 to 4 septa, with average dimensions of 17.5 to 35 × 1.5 to 2.5 μm. Based on the morphological characteristics, the pathogen was identified as Septoria lavandulae Desm., the causal agent of lavender leaf spot (1,2). Pathogenicity of one selected isolate (428-12) was tested by spraying 10 lavandin seedlings (8 weeks old) with a conidial suspension (106 conidia/ml) harvested from a 4-week-old monoconidial culture on PDA. Five lavandin seedlings, sprayed with sterile distilled water, were used as negative control. After 5 to 7 days, leaf spot symptoms identical to those observed on the source plants developed on all inoculated seedlings and the pathogen was successfully re-isolated. No symptoms were observed on any of the control plants. Morphological identification was confirmed by amplification and sequencing of the internal transcribed spacer (ITS) region of rDNA (3). Total DNA was extracted directly from fungal mycelium with a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and PCR amplification performed with primers ITS1F/ITS4. Sequence analysis of ITS region revealed at least 99% identity between the isolate 428-12 (GenBank Accession No. KF373078) and isolates of many Septoria species; however, no information was available for S. lavandulae. To our knowledge, this is the first report of Septoria leaf spot of lavandin caused by S. lavandulae in Croatia. Since the cultivation area of lavandin plants has been increasing in many continental parts of Croatia, especially in Slavonia and Baranja counties, the presence of a new and potentially harmful disease may represent a serious constraint for lavandin production and further monitoring is needed. References: (1) T. V. Andrianova and D. W. Minter. IMI Descriptions of Fungi and Bacteria, 142, Sheet 1416, 1999. (2) R. Bounaurio et al. Petria 6:183, 1996. (3) G. J. M. Verkley et al. Mycologia 96:558, 2004.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1226-1226
Author(s):  
A. Nasehi ◽  
J. B. Kadir ◽  
M. A. Zainal Abidin ◽  
M. Y. Wong ◽  
F. Mahmodi

In June 2011, tomatoes (Solanum lycopersicum) in major growing areas of the Cameron Highlands and the Johor state in Malaysia were affected by a leaf spot disease. Disease incidence exceeded 80% in some severely infected regions. Symptoms on 50 observed plants initially appeared on leaves as small, brownish black specks, which later became grayish brown, angular lesions surrounded by a yellow border. As the lesions matured, the affected leaves dried up and became brittle and later developed cracks in the center of the lesions. A survey was performed in these growing areas and 27 isolates of the pathogen were isolated from the tomato leaves on potato carrot agar (PCA). The isolates were purified by the single spore technique and were transferred onto PCA and V8 agar media for conidiophore and conidia production under alternating light (8 hours per day) and darkness (16 hours per day) (4). Colonies on PCA and V8 agar exhibited grey mycelium and numerous conidia were formed at the terminal end of conidiophores. The conidiophores were up to 240 μm long. Conidia were oblong with 2 to 11 transverse and 1 to 6 longitudinal septa and were 24 to 69.6 μm long × 9.6 to 14.4 μm wide. The pathogen was identified as Stemphylium solani on the basis of morphological criteria (2). In addition, DNA was extracted and the internal transcribed spacer region (ITS) was amplified by universal primers ITS5 and ITS4 (1). The PCR product was purified by the commercial PCR purification kit and the purified PCR product sequenced. The resulting sequences were 100% identical to published S. solani sequences (GenBank Accestion Nos. AF203451 and HQ840713). The amplified ITS region was deposited with NCBI GenBank under Accession No. JQ657726. A representative isolate of the pathogen was inoculated on detached 45-day-old tomato leaves of Malaysian cultivar 152177-A for pathogenicity testing. One wounded and two nonwounded leaflets per leaf were used in this experiment. The leaves were wounded by applying pressure to leaf blades with the serrated edge of a forceps. A 20-μl drop of conidial suspension containing 105 conidia/ml was used to inoculate these leaves (3). The inoculated leaves were placed on moist filter paper in petri dishes and incubated for 48 h at 25°C. Control leaves were inoculated with sterilized distilled water. After 7 days, typical symptoms for S. solani similar to those observed in the farmers' fields developed on both wounded and nonwounded inoculated leaves, but not on noninoculated controls, and S. solani was consistently reisolated. To our knowledge, this is the first report of S. solani causing gray leaf spot of tomato in Malaysia. References: (1) M. P. S. Camara et al. Mycologia 94:660, 2002. (2) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiversity Series 6:775, 2007.


Sign in / Sign up

Export Citation Format

Share Document