scholarly journals First Report of Epicoccum layuense Causing Leaf Brown Spot on Camellia oleifera in Hefei, China

Plant Disease ◽  
2022 ◽  
Author(s):  
Xiang Xie ◽  
Shiqiang Zhang ◽  
Qingjie Yu ◽  
Xinye Li ◽  
Yongsheng Liu ◽  
...  

Camellia oleifera, a major tree species for producing edible oil, is originated in China. Its oil is also called ‘‘eastern olive oil’’ with high economic value due to richness in a variety of healthy fatty acids (Lin et al. 218). However, leaves are susceptible to leaf spot disease (Zhu et al. 2014). In May 2021, we found circular to irregular reddish-brown lesions, 4-11 mm in diameter, near the leaf veins or leaf edges on 30%-50% leaves of 1/3 oil tea trees in a garden of Hefei City, Anhui Province, China (East longitude 117.27, North latitude 31.86) (Figure S1 A). To isolate the causal agents, symptomatic leaves were cut from the junction of diseased and healthy tissues (5X5 mm) and treated with 70 % alcohol for 30 secs and 1 % NaClO for 5 min, and subsequently inoculated onto PDA medium for culture. After 3 days, hyphal tips were transferred to PDA. Eventually, five isolates were obtained. Then the isolates were cultured on PDA at 25°C for 7 days and the mycelia appeared yellow with a white edge and secreted a large amount of orange-red material to the PDA (Figure S1 B and C). Twenty days later, the mycelium appeared reddish-brown, and sub-circular (3-10 mm) raised white or yellow mycelium was commonly seen on the Petri dish, and black particles were occasionally seen. Meanwhile, the colonies on the PDA produced abundant conidia. Microscopy revealed that conidia were globular to pyriform, dark, verrucose, and multicellular with 14.2 to 25.3 μm (=19.34 μm, n = 30) diameter (Figure S1 D). The morphological characteristics of mycelial and conidia from these isolates are similar to that of Epicoccum layuense (Chen et al.2020). To further determine the species classification of the isolates, DNA was extracted from 7-day-old mycelia cultures and the PCR-amplified fragments were sequenced for internal transcribed spacer (ITS), beta-tubulin and 28S large subunit ribosomal RNA (LSU) gene regions ITS1/ITS4, Bt2a/Bt2b and LR0R/LR5, followed by sequencing and molecular phylogenetic analysis of the sequences analysis (White et al. 1990; Glass and Donaldson 1995; Vilgalys and Hester 1990). Sequence analysis revealed that ITS, beta-tubulin, and LSU divided these isolates into two groups. The isolates AAU-NCY1 and AAU-NCY2, representing the first group (AAU-NCY1 and AAU-NCY5) and the second group (AAU-NCY2, AAU-NCY3 and AAU-NCY4), respectively, were used for further studies. Based on BLASTn analysis, the ITS sequences of AAU-NCY1 (MZ477250) and AAU-NCY2 (MZ477251) showed 100 and 99.6% identity with E. layuense accessions MN396393 and KY742108, respectively. And, the beta-tubulin sequences (MZ552310; MZ552311) showed 99.03 and 99.35% identity with E. layuense accessions MN397247 and MN397248, respectively. Consistently, their LSU (MZ477254; MZ477255) showed 99.88 and 99.77% identity with E. layuense accessions MN328724 and MN396395, respectively. Phylogenetic trees were built by maximum likelihood method (1,000 replicates) using MEGA v.6.0 based on the concatenated sequences of ITS, beta-tubulin and LSU (Figure S2). Phylogenetic tree analysis confirmed that AAU-NCY1 and AAU-NCY2 are closely clustered with E. layuense stains (Figure S2). To test the pathogenicity, conidial suspension of AAU-NCY2 (106 spores/mL) was prepared and sterile water was used as the control. Twelve healthy leaves (six for each treatment) on C. oleifera tree were punched with sterile needle (0.8-1mm), the sterile water or spore suspension was added dropwise at the pinhole respectively (Figure S1 E and F). The experiment was repeated three times. By ten-day post inoculation, the leaves infected by the conidia gradually developed reddish-brown necrotic spots that were similar to those observed in the garden, while the control leaves remained asymptomatic (Figure S1 G and H). DNA sequences derived from the strain re-isolated from the infected leaves was identical to that of the original strain. E. layuense has been reported to cause leaf spot on C. sinensis (Chen et al. 2020), and similar pathogenic phenotypes were reported on Weigela florida (Tian et al. 2021) and Prunus x yedoensis Matsumura in Korea ( Han et al. 2021). To our knowledge, this is the first report of E. layuense causing leaf spot on C. oleifera in Hefei, China.

Plant Disease ◽  
2021 ◽  
Author(s):  
Yue Lian Liu ◽  
Jian Rong Tang ◽  
Ya Li ◽  
Hong Kai Zhou

Wild rice (Oryza rufipogon) has been widely studied and cultivated in China in recent years due to its antioxidant activities and health-promoting effects. In December 2018, leaf spot disease on wild rice (O. rufipogon cv. Haihong-12) was observed in Zhanjiang (20.93 N, 109.79 E), China. The early symptom was small purple-brown lesions on the leaves. Then, the once-localized lesions coalesced into a larger lesion with a tan to brown necrotic center surrounded by a chlorotic halo. The diseased leaves eventually died. Disease incidence was higher than 30%. Twenty diseased leaves were collected from the fields. The margin of diseased tissues was cut into 2 × 2 mm2 pieces, surface-disinfected with 75% ethanol for 30 s and 2% sodium hypochlorite for 60 s, and then rinsed three times with sterile water before isolation. The tissues were plated on potato dextrose agar (PDA) medium and incubated at 28 °C in the dark for 4 days. Pure cultures were produced by transferring hyphal tips to new PDA plates. Fifteen isolates were obtained. Two isolates (OrL-1 and OrL-2) were subjected to further morphological and molecular studies. The colonies of OrL-1 and OrL-1 on PDA were initially light gray, but it became dark gray with age. Conidiophores were single, straight to flexuous, multiseptate, and brown. Conidia were oblong, slightly curved, and light brown with four to nine septa, and measured 35.2–120.3 µm × 10.3–22.5 µm (n = 30). The morphological characteristics of OrL-1 and OrL-2 were consistent with the description on Bipolaris oryzae (Breda de Haan) Shoemaker (Manamgoda et al. 2014). The ITS region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and translation elongation factor (EF-1α) were amplified using primers ITS1/ITS4, GDF1gpp1/GDR1 gdp2 (Berbee et al. 1999), and EF-1α-F/EF-1α-R EF-1/EF-2 (O’Donnell 2000), respectively. Amplicons of OrL-1 and OrL-2 were sequenced and submitted to GenBank (accession nos. MN880261 and MN880262, MT027091 and MT027092, and MT027093 and MT027094). The sequences of the two isolates were 99.83%–100% identical to that of B. oryzae (accession nos. MF490854,MF490831,MF490810) in accordance with BLAST analysis. A phylogenetic tree was generated on the basis of concatenated data from the sequences of ITS, GAPDH, and EF-1α via Maximum Likelihood method, which clustered OrL-1 and OrL-2 with B. oryzae. The two isolates were determined as B. oryzae by combining morphological and molecular characteristics. Pathogenicity test was performed on OrL-1 in a greenhouse at 24 °C to 30 °C with 80% relative humidity. Rice (cv. Haihong-12) with 3 leaves was grown in 10 pots, with approximately 50 plants per pot. Five pots were inoculated by spraying a spore suspension (105 spores/mL) onto leaves until runoff occurred, and five pots were sprayed with sterile water and used as controls. The test was conducted three times. Disease symptoms were observed on leaves after 10 days, but the controls remained healthy. The morphological characteristics and ITS sequences of the fungal isolates re-isolated from the diseased leaves were identical to those of B. oryzae. B. oryzae has been confirmed to cause leaf spot on Oryza sativa (Barnwal et al. 2013), but as an endophyte has been reported in O. rufipogon (Wang et al. 2015).. Thus, this study is the first report of B. oryzae causing leaf spot in O. rufipogon in China. This disease has become a risk for cultivated wild rice with the expansion of cultivation areas. Thus, vigilance is required.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lili Tang ◽  
Xixia Song ◽  
Liguo Zhang ◽  
Jing Wang ◽  
Shuquan Zhang

Industrial hemp is an economically important plant with traditional uses for textiles, paper, building materials, food and medicine (Li 1974; Russo et al. 2008; Zlas et al. 1993). In August 2020, an estimated 80% of the industrial hemp plants with leaf spots were observed in greenhouse in Minzhu town, Harbin City, Heilongjiang Province, China (45.8554°N, 126.8167°E), resulting in yield losses of 20%. Leaf symptoms began as small spots on the upper surface of leaves and gradually developed into brown spots with light yellow halos. These irregular spots expanded gradually and eventually covered the entire leaf; the center of the spots was easily perforated. To identify the pathogen, 20 diseased leaves were collected, and small sections of (3 to 5 mm) were taken from the margins of lesions of infected leaves. The pieces were sterilized with 75% alcohol for 30 s, a 0.1% mercuric chloride solution for 1 min, and then rinsed three times with sterile water. Samples were then cultured on potato dextrose agar at 28℃ in darkness for 4 days. A single-spore culture was obtained by monosporic isolation. Conidiophores were simple or branched, straight or flexuous, brown, and measured 22 to 61 μm long × 4 to 5 μm wide (n = 50). Conidia were solitary or in chains, brown or dark brown, obclavate, obpyriform or ellipsoid. Conidia ranged from 23 to 55 μm long × 10 to 15 μm wide (n = 50) with one to eight transverse and several longitudinal septa. For molecular identification (Jayawardena et al. 2019), genomic DNA of pathogenic isolate (MZ1287) was extracted by a cetyltrimethylammonium bromide protocol. Four gene regions including the rDNA internal transcribed spacer (ITS), glyceraldehyde-3-phosplate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1) and RNA polymerase II beta subunit (RPB2) were amplified with primers ITS1/ITS4, GDF1/GDR1, EF1-728F/EF1-986R and RPB2-5F/RPB2-7cR, respectively (White et al. 1990). Resulting sequences were deposited in GenBank with accession numbers of MW272539.1, MW303956.1, MW415414.1 and MW415413.1, respectively. A BLASTn analysis showed 100% homology with A. alternata (GenBank accession nos. MN615420.1, MH926018.1, MN615423.1 and KP124770.1), respectively. A neighbor-joining phylogenetic tree was constructed by combining all sequenced loci in MEGA7. The isolate MZ1287 clustered in the A. alternata clade with 100% bootstrap support. Thus, based on morphological (Simmons 2007) and molecular characteristics, the pathogen was identified as A. alternata. To test pathogenicity, leaves of ten healthy, 2-month-old potted industrial hemp plants were sprayed using a conidial suspension (1×106 spores/ml). Control plants were sprayed with sterile water. All plants were incubated in a greenhouse at 25℃ for a 16 h light and 8 h dark period at 90% relative humidity. The experiment was repeated three times. After two weeks, leaf spots of industrial hemp developed on the inoculated leaves while the control plants remained asymptomatic. The A. alternata pathogen was re-isolated from the diseased leaves on inoculated plants, fulfilling Koch's postulates. Based on morphology, sequencing, and pathogenicity test, the pathogen was identified as A. alternata. To our knowledge, this is the first report of A. alternata causing leaf spot disease of industrial hemp (Cannabis sativa L.) in China and is worthy of our attention for the harm it may cause to industrial hemp production.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ling Qiu ◽  
Jingwen Liu ◽  
Weigang Kuang ◽  
Kai Zhang ◽  
Jian Ma

Eurya nitida Korth. belonging to the family Theaceae is an evergreen shrub or small tree and is usually used as a very important ornamental tree and nectar source plant (Khan et al. 1992; Ma et al. 2013). It also has high medicinal values with the treatment of rheumatoid arthritis, diarrhea, innominate inflammatory of unknown origin, ulcer fester and traumatic hemorrhage (Park et al. 2004). In October 2020, symptoms of leaf spot were observed on E. nitida in Meiling Scenic Spot of Nanchang, Jiangxi Province, China (28.78°N, 115.83°E). We surveyed about 300 m2 of the mountain area which holds about 100 trees of E. nitida scattered naturally near the waterside or regularly planted on either side of the mountain road. Most of the infected plants were observed from humid environments or waterside, with 15~20% disease incidence, and the disease severity on a plant basis was determined to be 25% to 30%, depending on the field. Sixty infected leaves were collected from 20 individual trees which have the same symptoms. The symptoms on infected leaves appeared as tiny circular spots that gradually enlarged into brown circular necrotic lesions and then became a light gray with brown borders and black acervuli at the later stages of the disease. Ten leaves of infected tissues randomly selected from collected sixty infected leaves were cut into 4 mm2 pieces, and surface disinfected with 75% ethanol for 30s and 1% hypochlorite for 1 min, rinsed three times with sterile water, plated on potato dextrose agar (PDA), and incubated at 25°C in the dark for 5 to 7 days. Five isolates with similar morphological characteristics were obtained. Colonies developed copious white aerial mycelium covering the entire Petri dish area after 7 to 10 days. Conidiogenous cells were discrete, hyaline, and smooth. Conidia were fusiform, ellipsoid, 4-euseptate and ranged from 21.86 to 29.80 × 5.95 to 9.80 µm. Apical cells were hyaline with 2 to 3 unbranched, tubular apical appendages (mostly 3); basal cell was hyaline, obconic with a truncate base; three median cells doliiform to subcylindrical, brown. The morphological characteristics of all isolates matched features described for Pestalotiopsis chamaeropis Maharachch., K.D. Hyde & Crous (Maharachchikumbura et al. 2014). Two single representatives (JAUCC L001-1 and JAUCC L002) were used for molecular identification, which were verified based on the amplification of DNA sequences of internal transcribed spacer region (ITS) gene and translation elongation factor 1 alpha (TEF1-α) gene, using the primers ITS4/ITS5 (White et al. 1990) and EF1-526F/EF1-1567R (Rehner and Buckley 2005), respectively. The sequenced loci (GenBank accession nos. ITS: MW845761, MW828589 and TEF1-α: MW838967, MZ292464) exhibited over 99% homology with P. chamaeropis strain CBS 186.71 in GenBank (GenBank accession nos. KM199326 and KM199473), confirming the morphological identification. Phylogenetic reconstruction was generated by using the maximum likelihood (ML) method based on the Kimura 2-parameter model, with bootstrap nodal support for 1000 pseudoreplicates in MEGA software, version 7.0. The result showed that our isolates were clustered together with P. chamaeropis at 99% bootstrap values. Based on morphological characteristics and molecular phylogenetic analysis, the isolates were identified as P. chamaeropis. The pathogenicity of one representative isolate (JAUCC L001-1) was tested indoor by inoculating the top leaves of six healthy E. nitida plants. Three plants with three leaves were punctured with flamed needles and sprayed with a conidial suspension (1 × 106 conidia/ml), and other three plants wounded inoculated with mycelial plugs (5 × 5 mm3). Mock inoculations were used as controls with sterile water and non-infested PDA plugs on three leaves each. Treated plants were incubated in an artificial climate box with high relative humidity at 25 °C. After 10 days, symptoms on all wounded inoculated plants were similar to those previously observed with distinct tiny circular spots, whereas no symptoms appeared on inoculated plants. Pestalotiopsis chamaeropis was re-isolated from symptomatic tissues but not from the mock-inoculated plants, and its identity was confirmed by morphological characteristics and molecular data, which confirmed Koch's postulates. Pestalotiopsis chamaeropis was previously reported as the causal agent of leaf blight diseases on Camellia sinensis in China (Chen et al. 2020), Pieris japonica in Japan (Nozawa et al. 2019) and Prostanthera rotundifolia in Australia (Azin et al. 2015). To our knowledge, this is the first report of P. chamaeropis causing a leaf spot disease on E. nitida in China, and this disease may be more widespread than the sampled location. This finds is beneficial to the better protection of E. nitida, a widespread medicinal and nectar source plant with high economic value.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 847-847 ◽  
Author(s):  
S. T. Seo ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Rose of Sharon, Hibiscus syriacus L., is a flowering shrub in the family Malvaceae planted as the national flower of South Korea. In September 2012, previously unknown leaf spots with premature defoliation were observed on dozens of Rose of Sharon plants growing in the shaded area in a park of Dongducheon, Korea. The same symptoms were found on Rose of Sharon in several localities of Korea in 2012. The symptoms usually started as small, dark brown to grayish leaf spots, eventually causing leaf yellowing with significant premature defoliation. The diseased leaves retained for a while green color at the margin of the spots. Representative samples (n = 5) were deposited in the Korea University Herbarium (KUS). Conidiophores of the fungus observed microscopically on the leaf spots were erect, brown to dark brown, single or in clusters, amphigenous but mostly hypophyllous, and measured 80 to 400 × 5 to 10 μm. Conidia were borne singly or in short chains, ranging from cylindrical to broadest at the base and tapering apically, straight to slightly curved, pale olivaceous brown, 2 to 16 pseudoseptate, 50 to 260 × 9 to 20 μm, each with a conspicuous thickened hilum. On potato dextrose agar, single-spore cultures of two isolates were identified as Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei on the basis of morphological and cultural characteristics (1,2). Two monoconidial isolates were preserved at the Korean Agricultural Culture Collection (KACC46956 and KACC46957). Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequences of 520 bp were deposited in GenBank (Accession Nos. KC193256, KC193257). A BLAST search in GenBank revealed that the sequences showed 100% identity with those of numerous C. cassiicola isolates from diverse substrates. To conduct a pathogenicity test, a conidial suspension (ca. 2 × 104 conidia/ml) was prepared in sterile water by harvesting conidia from 2-week-old cultures of KACC46956, and the suspension was sprayed onto the leaves of three healthy 2-year-old plants. Inoculated plants were kept in humid chambers for the first 48 h and thereafter placed in the glasshouse. After 10 days, typical leaf spot symptoms developed on the leaves of all three inoculated plants. C. cassiicola was reisolated from the lesions, confirming Koch's postulates. Control plants treated with sterile water remained symptomless. C. cassiicola is cosmopolitan with a very wide host range (1,2). Though Corynespora hibisci Goto was recorded to be associated with brown spot disease of H. syriacus in Japan (4), there is no previous record of C. cassiicola on H. syriacus (3). To our knowledge, this is the first report of Corynespora leaf spot on Rose of Sharon in Korea. According to our field observations in Korea, this disease was found in August and September, following a prolonged period of moist weather. Severe infection resulted in leaf yellowing and premature defoliation, reducing tree vigor and detracting the beauty of green leaves. References: (1) L. J. Dixon et al. Phytopathology 99:1015, 2009. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonw. Mycol. Inst., Kew, UK, 1971. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved November 22, 2012. (4) K. Goto. Ann. Phytopathol. Soc. Japan 12:14, 1942.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1536-1536 ◽  
Author(s):  
G. Polizzi ◽  
I. Castello ◽  
A. M. Picco ◽  
D. Rodino

St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze) is used for lawns in southern Italy because it is much more resistant to biotic and abiotic adversities than other turfgrass species. Because few seeds are viable, this species is established by vegetative propagation. A new disease was noticed during the spring of 2002 and 2003 on cuttings of St. Augustinegrass growing in three greenhouses in eastern Sicily. The disease affected leaves and culms and caused a progressive drying of the plants. The infection was first seen on leaves as gray, necrotic spots that enlarged in high-humidity conditions to form oval, and later, spindle-shaped lesions. In association with the lesions, it was possible to observe fungal spore development and sunken areas with blue-gray centers and slightly irregular, brown margins with yellow halos. Spots were concentrated without specific arrangement along longitudinal veins and the midrib and at the base, tip, and margins of the leaf blade. Symptoms on the culms consisted of brown-to-black blotches that sometimes extended throughout the internodes. From these infected tissues, 20 explants taken from leaves and culms were cut, washed with sterile water, and placed on 1.5% water agar (WA). Later, conidia and conidiophores were obtained from colonies with a sterile glass needle and placed on 4% WA. From these plates, two monoconidial isolates were obtained and transferred to rice meal medium (1). The colonies were identified as Pyricularia grisea Cooke (Sacc.), anamorphic state of Magnaporthe grisea (Hebert) Yeagashi & Udagawa, the cause of rice blast disease and gray leaf spot disease of turfgrasses. The conidia were pyriform to obclavate, narrowed toward the tip, rounded at the base, 2-septate, 21 to 31 μm × 6 to 10 μm (average 25.7 ×8.2 μm). Pathogenicity tests were performed by inoculating leaves and culms of six St. Augustinegrass plants with a conidial suspension of the fungus (1.5 ×105 conidia per ml). The same number of noninoculated plants was used as controls. All plants were incubated in a moist chamber with high humidity at 25°C. After 6 days, all inoculated plants showed typical symptoms of the disease. Koch's postulates were fulfilled by isolating P. grisea from inoculated plants. Gray leaf spot caused by P. grisea has been a chronic problem on St. Augustinegrass since it was first reported in 1957 (2). To our knowledge, this is the first report of P. grisea on St. Augustinegrass in Italy. While it does not appear to be an important disease in the field at this time in Sicily, it could cause losses in greenhouses where vegetative material is propagated for field planting. A preliminary molecular analysis has shown a clear distinction between the tested strain and other strains isolated from rice seeds and plants in northern Italy. References: (1) E. Roumen et al. Eur. J. Plant Pathol. 103:363, 1997. (2) L. P. Tredway et al. Plant Dis. 87:435, 2003.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 911-911 ◽  
Author(s):  
J. H. Park ◽  
S. E. Cho ◽  
K. S. Han ◽  
H. D. Shin

Rudbeckia hirta L. var. pulcherrima Farw. (synonym R. bicolor Nutt.), known as the black-eyed Susan, is a flowering plant belonging to the family Asteraceae. The plant is native to North America and was introduced to Korea for ornamental purposes in the 1950s. In July 2011, a previously unknown leaf spot was first observed on the plants in a public garden in Namyangju, Korea. Leaf spot symptoms developed from lower leaves as small, blackish brown lesions, which enlarged to 6 mm in diameter. In the later stages of disease development, each lesion was usually surrounded with a yellow halo, detracting from the beauty of the green leaves of the plant. A number of black pycnidia were present in diseased leaf tissue. Later, the disease was observed in several locations in Korea, including Pyeongchang, Hoengseong, and Yangpyeong. Voucher specimens were deposited at the Korea University Herbarium (KUS-F25894 and KUS-F26180). An isolate was obtained from KUS-F26180 and deposited at the Korean Agricultural Culture Collection (Accession No. KACC46694). Pycnidia were amphigenous, but mostly hypogenous, scattered, dark brown-to-rusty brown, globose, embedded in host tissue or partly erumpent, 50 to 80 μm in diameter, with ostioles 15 to 25 μm in diameter. Conidia were substraight to mildly curved, guttulate, hyaline, 25 to 50 × 1.5 to 2.5 μm, and one- to three-septate. Based on the morphological characteristics, the fungus was consistent with Septoria rudbeckiae Ellis & Halst. (1,3,4). Morphological identification of the fungus was confirmed by molecular data. Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA.). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 528 bp was deposited in GenBank (Accession No. JQ677043). A BLAST search showed that there was no matching sequence of S. rudbeckiae; therefore, this is the first ITS sequence of the species submitted to GenBank. The ITS sequence showed >99% similarity with those of many Septoria species, indicating their close phylogenetic relationship. Pathogenicity was tested by spraying leaves of three potted young plants with a conidial suspension (2 × 105 conidia/ml), which was harvested from a 4-week-old culture on potato dextrose agar. Control leaves were sprayed with sterile water. The plants were covered with plastic bags to maintain 100% relative humidity (RH) for the first 24 h. Plants were then maintained in a greenhouse (22 to 28°C and 70 to 80% RH). After 5 days, leaf spot symptoms identical to those observed in the field started to develop on the leaves inoculated with the fungus. No symptoms were observed on control plants. S. rudbeckiae was reisolated from the lesions of inoculated plants, confirming Koch's postulates. A leaf spot disease associated with S. rudbeckiae has been reported on several species of Rudbeckia in the United States, Romania, and Bulgaria (1–4). To our knowledge, this is the first report of leaf spot on R. hirta var. pulcherrima caused by S. rudbeckiae in Korea. References: (1) J. B. Ellis and B. D. Halsted. J. Mycol. 6:33, 1890. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ February 2, 2012. (3) E. Radulescu et al. Septoriozele din Romania. Ed. Acad. Rep. Soc. Romania, Bucuresti, Romania, 1973. (4) S. G. Vanev et al. Fungi Bulgaricae 3:1, 1997.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 458-458 ◽  
Author(s):  
Z. W. Luo ◽  
F. He ◽  
H. Y. Fan ◽  
X. H. Wang ◽  
M. Hua ◽  
...  

Pineapple (Ananas comosus (L.) Merr.) is an important perennial monocotyledonous plant that serves as an important fruit crop globally and is also produced in the Hainan Province of China where production in 2009 was 296,600 t. In July 2009, atypical symptoms of a leaf spot disease were observed on mature pineapple leaves in Chengmai County; approximately 15% of plants propagated from suckers became symptomatic after 150 to 300 days, eventually causing a 3 to 10% yield loss. In the initial infection stage, grayish white-to-yellowish white spots emerged on the leaf surfaces that ranged from 1.0 to 2.4 × 0.3 to 0.7 cm; black specks were not always present in the spots. Leaf spots also had distinctive light brown-to-reddish brown banding pattern on the edges. Several spots would often merge to form large lesions, 6.5 to 15.4 × 2.5 to 5.6 cm, covering more than 67% of the leaf surface, which can lead to death of the plant. Infected pineapple leaves collected from an orchard of Chengmai County were surface sterilized (75% ethanol for 30 s, 0.1% HgCl2 for 2 min, and rinsed three times in sterile distilled water). Leaf pieces were placed on potato dextrose agar medium and then incubated at 25°C. The emerging fungal colonies were grayish white to brown. Similar strains were obtained from Qionghai City and Wanning City subsequently. Two isolates, ITF0706-1 and ITF0706-2, were used in confirmation of the identity of the pathogen and in pathogenicity tests. Colonies were fast growing (more than 15 mm per day at 25 to 30°C) with dense aerial mycelia. Conidia were fusiform, pyriform to oval or cylindrical, olive brown to dark brown, 3 to 10 septate (typically 5 to 8), 33.2 to 102.5 × 9.0 to 21.3 μm, with a strongly protruding hilum bulged from the basal cell, which were similar to the Type A conidia described by Lin et al. (3). The strains were subjected to PCR amplification of the internal transcribed spacer (ITS)1-5.8S-ITS2 regions with universal primer pair ITS1/ITS4. The ITS sequence comparisons (GenBank Accession Nos. JN711431 and JN711432) shared between 99.60 and 99.83% identity with the isolate CATAS-ER01 (GenBank Accession No. GQ169762). According to morphological and molecular analysis, the two strains were identified as Exserohilum rostratum (Drechs.) Leonard & Suggs. Pathogenicity experiments were conducted five times and carried out by spraying a conidial suspension (105 CFU/ml) on newly matured leaves of healthy pineapple plants; plants sprayed with sterile water served as the negative control. Plants were incubated in the growth chamber at 20 to 25°C. Symptoms of leaf spot developed on test plants 7 days after inoculation while the control plants remained asymptomatic. Koch's postulates were fulfilled with the reisolation of the two fungal strains. Currently, E. rostratum is one of the most common pathogens on Bromeliads in Florida (2) and has been reported on Zea mays (4), Musa paradisiacal (3), and Calathea picturata (1) in China, but to our knowledge, this is the first report of leaf spot disease caused by E. rostratum on pineapple in Hainan Province of P.R. China. References: (1) L. L. Chern et al. Plant Dis. 95:1033, 2011. (2) R. M. Leahy. Plant Pathol. Circ. No. 393. Florida Department of Agriculture and Consumer Services Division of Plant Industry, 1999. (3) S. H. Lin et al. Australas. Plant Pathol. 40:246, 2011. (4) J. N. Tsai et al. Plant Pathol. Bull. 10:181, 2001.


Plant Disease ◽  
2020 ◽  
Author(s):  
Quan Shen ◽  
Xixu Peng ◽  
Feng He ◽  
Shaoqing Li ◽  
Zuyin Xiao ◽  
...  

Buckwheat (Fagopyrum tataricum) is a traditional short-season pseudocereal crop originating in southwest China and is cultivated around the world. Antioxidative substances in buckwheat have been shown to provide many potential cardiovascular health benefits. Between August and November in 2019, a leaf spot was found in several Tartary buckwheat cv. Pinku1 fields in Xiangxiang County, Hunan Province, China. The disease occurred throughout the growth cycle of buckwheat after leaves emerged, and disease incidence was approximately 50 to 60%. Initially infected leaves developed a few round lesions, light yellow to light brown spots. Several days later, lesions began to enlarge with reddish brown borders, and eventually withered and fell off. Thirty lesions (2×2 mm) collected from three locations with ten leaves in each location were sterilized in 70% ethanol for 10 sec, in 2% sodium hypochlorite for 30 sec, rinsed in sterile water for three times, dried on sterilized filter paper, and placed on a potato dextrose PDA with lactic acid (3 ml/L), and incubated at 28°C in the dark for 3 to 5 days. Fungal colonies were initially white and later turned black with the onset ofsporulation. Conidia were single-celled, black, smooth, spherical to subspherical, and measured 9.2 to 15.6 µm long, and 7.1 to 11.6 µm wide (n=30). Each conidium was terminal and borne on a hyaline vesicle at the tip of conidiophores. Morphologically, the fungus was identified as Nigrospora osmanthi (Wang et al. 2017). Identification was confirmed by amplifying and sequencing the ITS region, and translation elongation factor 1-alpha (TEF1-α) and partial beta-tublin (TUB2) genes using primers ITS1/ITS4 (Mills et al. 1992), EF1-728F/EF-2 (Carbone and Kohn 1999; O’Donnell et al. 1998) and Bt-2a/Bt-2b (Glass et al. 1995), respectively. BLAST searches in GenBank indicated the ITS (MT860338), TUB2 (MT882054) and TEF1-α (MT882055) sequences had 99.80%, 99% and 100% similarity to sequences KX986010.1, KY019461.1 and KY019421.1 of Nigrospora osmanthi ex-type strain CGMCC 3.18126, respectively. A neighbor-joining phylogenetic tree constructed using MEGA7.0 with 1,000 bootstraps based on the concatenated nucleotide sequences of the three genes indicated that our isolate was closely related to N. osmanthi. Pathogenicity test was performed using leaves of healthy F. tataricum plants. The conidial suspension (1 × 106 conidia/ml) collected from PDA cultures with 0.05% Tween 20 buffer was used for inoculation by spraying leaves of potted 20-day-old Tartary buckwheat cv. Pinku1. Five leaves of each plant were inoculated with spore suspensions (1 ml per leaf). An equal number of control leaves were sprayed with sterile water to serve as a control. The treated plants were kept in a greenhouse at 28°C and 80% relative humidity for 24 h, and then transferred to natural conditions with temperature ranging from 22 to 30°C and relative humidity ranging from 50 to 60%. Five days later, all N. osmanthi-inoculated leaves developed leaf spot symptoms similar to those observed in the field, whereas control leaves remained healthy. N. osmanthi was re-isolated from twelve infected leaves with frequency of 100%, fulfilling Koch’s postulates. The genus Nigrospora has been regarded by many scholars as plant pathogens (Fukushima et al. 1998) and N. osmanthi is a known leaf blight pathogen for Stenotaphrum secundatum (Mei et al. 2019) and Ficus pandurata (Liu et al. 2019) but has not been reported on F. tataricum. Nigrospora sphaerica was also detected in vegetative buds of healthy Fagopyrum esculentum Moench (Jain et al. 2012). To our knowledge, this is the first report of N. osmanthi causing leaf spot on F. tataricum in China and worldwide. Appropriate strategies should be developed to manage this disease.


Sign in / Sign up

Export Citation Format

Share Document