scholarly journals Plant-Parasitic Nematodes Attacking Cotton in the United States: Old and Emerging Production Challenges

Plant Disease ◽  
2004 ◽  
Vol 88 (2) ◽  
pp. 100-113 ◽  
Author(s):  
Stephen R. Koenning ◽  
J. Allen Wrather ◽  
Terrence L. Kirkpatrick ◽  
Nathan R. Walker ◽  
James L. Starr ◽  
...  
Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 74-74 ◽  
Author(s):  
P. Agudelo ◽  
D. Harshman

Lilyturf (Liriope muscari (Decne.) L.H. Bailey), an herbaceous plant, is commonly used in landscaping including borders (along sidewalks, driveways, and trees) and mass plantings as groundcover in the southeastern United States. In December of 2009, a soil sample was submitted to our lab for diagnosis of plant-parasitic nematodes from an area planted with lilyturf located on the Clemson University main campus. A high population density (1,220 individuals/100 cm3 of soil) of spiral nematodes (Scutellonema brachyurum (Steiner, 1938) Andrássy, 1958) was found by routine extraction by sugar centrifugal flotation (3). Other plant-parasitic nematodes, mainly ring nematodes (10 individuals/100 cm3) and stubby root nematodes (10 individuals/100 cm3), were present. To verify if high numbers of spiral nematodes were consistently associated with lilyturf, 20 additional soil and root samples were collected from different places on the campus. In all cases, S. brachyurum was found in densities ranging from 680 to 1,600 individuals/100 cm3 of soil (average of 1,210 individuals/100 cm3). The species was identified by morphological characters of females, including well developed stylet (26 to 30 μm long), no spermatheca, no sperm in uterus, tail broadly rounded with 8 to 12 annules between anus and tail, and scutella at anus level. As is commonly the case for this species, no males were found in any of the samples collected. Examination of the roots revealed numerous, small, reddish brown, necrotic lesions, apparently caused by the feeding and penetration of S. brachyurum. Host plant suitability and pathogenicity of the nematode were tested in the greenhouse. Ten nematode-free lilyturf plants grown individually in 15-cm-diameter plastic pots with pasteurized soil were inoculated with 1,000 spiral nematodes each. Ten uninoculated plants were kept under identical conditions as controls. Three months after inoculation, soil population densities were measured and reproduction factors were calculated to be between 2.8 and 5.4 (final population density divided by initial population density) for the 10 plants. Characteristic lesions previously described were observed in the roots of all inoculated plants, along with slight chlorosis of foliage. These symptoms were not observed on control plants. Spiral nematodes may attack the roots and stolons of lilyturf as ectoparasites or they may enter them and feed in the cortex as endoparasites. Although root lesions were common on affected plants, root injury in general was not severe and generalized root decay was not observed on either the collected plants or those from the greenhouse study. Reports on the pathogenicity of S. brachyurum are variable. Moderate damage was recorded on amaryllis and other ornamentals (4), while measurable damage was observed on tobacco (2), with approximately 100 individuals/100 cm3 of soil, and severe damage on Aloe vera ((L.) Burm. f.), with approximately 500 individuals/100 cm3 (1). To our knowledge, this is the first report of S. brachyurum causing visible symptoms on lilyturf. As the interstate and international movement of perennial plants continues to grow, awareness of the host status of potentially harmful nematodes becomes essential information. References: (1) R. P. Esser et al. Nematropica 16:65, 1986. (2) T. W. Graham. Phytopathology (Abstr.) 45:347, 1955. (3) W. R. Jenkins. Plant Dis. Rep. 48:692, 1964. (4) L. Nong and G. F. Weber. (Abstr.) Phytopathology 54:902, 1964.


2019 ◽  
Vol 20 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Inga A. Zasada ◽  
Megan Kitner ◽  
Catherine Wram ◽  
Nadine Wade ◽  
Russell E. Ingham ◽  
...  

The Pacific Northwest (PNW) of the United States (Idaho, Oregon, and Washington) is a diverse agricultural production area with over 400 different commodities grown in the region. Plant-parasitic nematodes are a constraint to the production of many of these commodities. Soil sample data from 2012 to 2016 were obtained from nematode diagnostic laboratories in the region to assess trends in occurrence, population densities, and distribution of plant-parasitic nematodes in the PNW. A total of 38,022 unique data points were analyzed. The number of plant-parasitic nematode samples processed in the PNW by diagnostic laboratories has significantly increased from 2012 to 2016. Fifteen genera of plant-parasitic nematodes were identified by diagnostic laboratories, with 86% of the samples in the PNW containing at least one plant-parasitic nematode genus. These laboratories provide a valuable service to agriculture in the PNW. Additionally, they serve as a rich source of information on plant-parasitic nematode distribution, occurrence, and abundance that, when analyzed, provides an empirical basis upon which to interpret individual grower reports and make management recommendations.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1018-1018
Author(s):  
P. C. McGroary ◽  
J. L. Cisar ◽  
R. M. Giblin-Davis ◽  
O. F. Ruiz ◽  
E. J. Nangle

Seashore paspalum (Paspalum vaginatum Swartz) is a warm-season perennial turfgrass commonly used for golf courses that are grown in saline environments or using saline water for irrigation. However, seashore paspalum is also grown in non-saline conditions due to its low fertilizer and water requirements (2). In Barbados, on a newly constructed golf course, seashore paspalum ‘Sea Isle Supreme’ sprigs were imported from Georgia (United States) and were planted over 2006 and 2007 on greens, tees, fairways, and rough. Golf greens were constructed following the United States Golf Association Green Section (Far Hills, NJ) putting green guidelines. Tees and fairways were constructed using native soil. Two years after the grow-in, the putting greens began to exhibit irregular chlorotic patches, followed by gradual thinning and decline of turfgrass stand density in those areas. Additionally, turfgrass roots sampled from those symptomatic patches appeared to be abbreviated compared to non-symptomatic areas of the greens. A survey was conducted in May 2013 to determine if plant-parasitic nematodes were present coinciding with the observed symptoms, which were similar to those described in a previous report (3). Consequently, two samples were collected from each green with a total of four greens sampled. Each sample consisted of 20 soil cores (15 cm depth × 1.2 cm in diameter) from either areas of the greens showing symptoms or from non-symptomatic areas. Nematodes were extracted from 100 cm3 soil samples using a modified centrifugal-sugar flotation technique (4). No plant parasitic nematodes were present in any of the samples from the non-symptomatic areas. Three genera of plant parasitic nematodes were found in all the samples from the symptomatic areas: Helicotylenchus. Mesocriconema, and Pratylenchus. Nematode populations of these genera averaged 30, 60, and 200 nematodes per 100 cm3, respectively. Populations of the genera Helicotylenchus and Mesocriconema were below the action threshold levels for seashore paspalum used by the University of Florida Nematode Assay Laboratory (1). Currently, no threshold exists for Pratylenchus for seashore paspalum. Conversely, the genera Helicotylenchus. Mesocriconema, and Pratylenchus were found associated with the irregular chlorotic patches but not with the non-symptomatic areas. To our knowledge, this is the first report of plant parasitic nematodes associated with seashore paspalum maintained as putting greens in Barbados. References: (1) W. T. Crow. Nematode management for golf courses in Florida. EDIS. Accessed 31 July 2013 from: http://edis.ifas.ufl.edu/in124 , 2001. (2) R. R. Duncan and R. N. Carrow. Seashore Paspalum: The Environmental Turfgrass. John Wiley & Sons, Inc., Hoboken, New Jersey, 2000. (3) A. C. Hixson and W. T. Crow. Plant Dis. 88:680, 2004. (4) W. R. Jenkins. Plant Dis. Rep. 48:692, 1964.


2003 ◽  
Vol 4 (1) ◽  
pp. 13 ◽  
Author(s):  
W. T. Crow ◽  
N. R. Walker

Various turfgrass species are used as ground cover for residential, commercial, right-of-way, and recreational purposes in the southern United States. Plant-parasitic nematodes are common and destructive pests of both warm- and cool-season turfgrasses. The population diversity and distribution of plant-parasitic nematodes in numerous turfgrass ecosystems have been characterized in this study. Accepted for publication 4 April 2003. Published 13 May 2003.


EDIS ◽  
2013 ◽  
Vol 2013 (1) ◽  
Author(s):  
William T. Crow

Spiral nematodes of the genus Helicotylenchus are among the most ubiquitous plant-parasitic nematodes worldwide. Helicotylenchus pseudorobustus is a species common in Florida and the southeastern United States and is frequently found associated with turfgrasses and other grass hosts in the region. On most plants, it is not considered particularly damaging, but recent research has shown that this species suppresses growth of certain turfgrass hosts. Seashore paspalum, a turfgrass used in tropical and subtropical regions, is particularly susceptible to infestation. This 4-page fact sheet was written by William T. Crow and published by the UF Department of Entomology and Nematology, January 2013. http://edis.ifas.ufl.edu/in973


Genome ◽  
2020 ◽  
pp. 1-10
Author(s):  
Thomas O. Powers ◽  
Timothy S. Harris ◽  
Rebecca S. Higgins ◽  
Peter G. Mullin ◽  
Kirsten S. Powers

Nematodes are frequently cited as underrepresented in faunistic surveys using DNA barcoding with COI. This underrepresentation is generally attributed to a limited presence of nematodes in DNA databases which, in turn, is often ascribed to structural variability and high evolutionary rates in nematode mitochondrial genomes. Empirical evidence, however, indicates that many taxa are readily amplified with primer sets specifically targeted to different nematode families. Here we report the development of a COI reference library of 1726 specimens in the terrestrial plant parasitic nematode superfamily Criconematoidea. Specimens collected during an ecoregion survey of North America were individually photographed, measured, and PCR amplified to produce a 721 bp region of COI for taxonomic analysis. A neighbor-joining tree structured the dataset into 179 haplotype groups that generally conformed to morphospecies in traditional analysis or Barcode Index Numbers (BINs) in the BOLD system, although absent formal BIN membership due to insufficient overlap with the Folmer region of COI. Approximately one-third of the haplotype groups could be associated with previously described species. The geographic distribution of criconematid nematode species suggests a structure influenced by the major habitat types in the United States and Canada. All sequences collected in the ecoregion survey are deposited in BOLD.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 404-410 ◽  
Author(s):  
Danqiong Huang ◽  
Guiping Yan ◽  
Neil Gudmestad ◽  
Weimin Ye ◽  
Jonathan Whitworth ◽  
...  

Four trichodorid species, Paratrichodorus allius, P. minor, P. porosus, and Trichodorus obtusus, were found in multiple states in the United States. Traditional diagnosis based on morphology and morphometrics is laborious and requires an experienced taxonomist. Additionally, end-point diagnosis using PCR was only available for P. allius. To increase diagnostic efficiency and reduce costs, a one-step multiplex PCR assay was developed to simultaneously identify these four species using one PCR reaction. Available sequences of 18S ribosomal DNA and internal transcribed spacer 1 (ITS1) region of these species were aligned and five primers were designed. The conserved forward primer located in the 18S region, in combination with the species-specific antisense primer in the ITS1 region, amplified a single distinctive PCR fragment for each species (421/425 bp for P. allius, 190 bp for P. minor, 513 bp for P. porosus, and 353 bp for T. obtusus). In silico analysis with 10 other trichodorid species and experimental analysis using samples with these four species, 20 other plant-parasitic and three non-plant-parasitic nematodes demonstrated high specificity with the primers designed. The multiplex PCR amplified desirable fragments using a set of artificially mixed templates containing one, two, three, or four targeted species. The reliability of multiplex PCR results was demonstrated by using nematode populations isolated from infested fields from diverse geographic regions in eight states. The multiplex PCR-based tool developed in this study for the first time provides a simple, rapid, and cost-friendly assay for accurate diagnosis of the four major trichodorid nematodes in the United States.


EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
pp. 8
Author(s):  
Zane Grabau

This 8-page fact sheet written by Zane J. Grabau and published in January 2017 by the UF Department of Entomology and Nematology explains how to diagnose and manage nematode problems in cotton production.­http://edis.ifas.ufl.edu/ng015


Sign in / Sign up

Export Citation Format

Share Document