O processo erosivo é um fenômeno que acontece devido às condições climáticas ou uso inadequado da terra. O mapeamento dos níveis de vulnerabilidade à erosão de uma área pode ocorrer usando diferentes modelos de inferência geográfica. No entanto, definir o método apropriado é ainda uma questão a ser respondida. Este trabalho apresenta uma abordagem de validação de mapa de vulnerabilidade à erosão elaborado por diferentes métodos de inferência. Como estudo de caso, adotou-se uma bacia hidrográfica e considerou-se os seguintes critérios: geomorfologia, pedologia, declividade, densidade de drenagem e cobertura da terra. Dentre os métodos testados tem-se: Combinação Linear Ponderada (CLP) e três operadores Fuzzy: soma algébrica, produto algébrico e gamma, variando o expoente “γ” entre os valores 0,4; 0,6 e 0,8. Os pesos dos critérios foram definidos com base no Processo Analítico Hierárquico. A validação dos mapas ocorreu usando 1902 pontos, sendo 951 pontos de erosão na área, definidos com base em imagens do Google Earth Pro, e 951 pontos sem erosão, gerados aleatoriamente no QGIS 3.8. O modelo de regressão logística foi usado parar comparar o desempenho de cada mapa ao apontar as áreas com maior e menor grau de vulnerabilidade. A melhor modelagem foi alcançada com o operador Fuzzy gamma quando parametrizado com γ = 0,6. Embora o CLP seja a abordagem recorrente em estudos ambientais envolvendo inferência geográfica, nossos resultados demostram que outros operadores podem produzir resultados mais próximos aos encontrados com a realidade observada em campo. Machine learning erosion and vulnerability map validation A B S T R A C TErosion is a natural phenomenon that happens in all ecosystems, whether due to weather conditions or inappropriate land use. Mapping the erosion vulnerability levels of an area can occur using different methods of geographic inference. However, defining the appropriate method is still a question to be answered. This paper presents an erosion vulnerability map validation approach elaborated by different inference methods. As a case study, a watershed was adopted and the following criteria were considered: geomorphology, pedology, slope, drainage density and land cover. Among the tested methods are: Weighted Linear Combination (WLC) and three Fuzzy operators: algebraic sum, algebraic product and gamma, varying the exponent “γ” between the values 0.4; 0.6 and 0.8. The weights of the criteria were defined based on the Hierarchical Analytical Process. The validation of the maps took place using 1902 points, with 951 erosion points in the area defined based on Google Earth Pro images and 951 points without erosion randomly generated in QGIS 3.8. The logistic regression model was used to compare the performance of each map by pointing out the areas with the highest and lowest degree of vulnerability. The best modeling was achieved with the Fuzzy gamma operator when parameterized with γ = 0.6. Although WLC is the recurring approach in environmental studies involving geographic inference, our results show that other operators can produce results closer to those encountered with the reality observed in the field.Keywords: Geographical inference; multicriteria analysis; data validation; environmental impact.