scholarly journals Characterization of a Novel Broad-Spectrum Antifungal Protein from Virus-Infected Helminthosporium (Cochliobolus) victoriae

2010 ◽  
Vol 100 (9) ◽  
pp. 880-889 ◽  
Author(s):  
Patricia B. de Sá ◽  
Wendy M. Havens ◽  
Said A. Ghabrial

A broad-spectrum anti-fungal protein of ≈10 kDa, designated victoriocin, was purified from culture filtrates of a virus-infected isolate of the plant-pathogenic fungus Helminthosporium victoriae (teleomorph: Cochliobolus victoriae) by a multistep procedure involving ultrafiltration and reverse-phase high-performance liquid chromatography (RP-HPLC). Amino acid sequences, obtained by automated Edman degradation sequencing of RP-HPLC-purified victoriocin-derived peptides, were used to design primers for degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) amplification from H. victoriae DNA and cDNA templates. An open reading frame coding for a victoriocin precursor of 183 amino acids with calculated molecular mass of ≈20 kDa was amplified by PCR from H. victoriae genomic DNA but not from the control fungus Penicillium chrysogenum. Southern hybridization analysis confirmed the presence of the victoriocin gene in all H. victoriae strains tested. Sequence analysis indicated that victoriocin has a sequence motif similar to that found in scorpion short toxin/charybdotoxin and a consensus sequence similar to that found in defensins. Victoriocin, like some other antifungal proteins, including the totivirus-encoded killer proteins, is predicted to be expressed in vivo as a preprotoxin precursor consisting of a hydrophobic N-terminal secretion signal followed by a pro-region and terminating in a classical Kex2p endopeptidase cleavage site that generates the N terminus of the mature victoriocin. A putative cell wall protein of ≈30 kDa (P30) co-purified with victoriocin from cultural filtrates. The potential role of P30 in the antifungal activity of H. victoriae culture filtrates is discussed.

Brain ◽  
2014 ◽  
Vol 137 (11) ◽  
pp. 2938-2950 ◽  
Author(s):  
Axel Freischmidt ◽  
Kathrin Müller ◽  
Lisa Zondler ◽  
Patrick Weydt ◽  
Alexander E. Volk ◽  
...  

Abstract Knowledge about the nature of pathomolecular alterations preceding onset of symptoms in amyotrophic lateral sclerosis is largely lacking. It could not only pave the way for the discovery of valuable therapeutic targets but might also govern future concepts of pre-manifest disease modifying treatments. MicroRNAs are central regulators of transcriptome plasticity and participate in pathogenic cascades and/or mirror cellular adaptation to insults. We obtained comprehensive expression profiles of microRNAs in the serum of patients with familial amyotrophic lateral sclerosis, asymptomatic mutation carriers and healthy control subjects. We observed a strikingly homogenous microRNA profile in patients with familial amyotrophic lateral sclerosis that was largely independent from the underlying disease gene. Moreover, we identified 24 significantly downregulated microRNAs in pre-manifest amyotrophic lateral sclerosis mutation carriers up to two decades or more before the estimated time window of disease onset; 91.7% of the downregulated microRNAs in mutation carriers overlapped with the patients with familial amyotrophic lateral sclerosis. Bioinformatic analysis revealed a consensus sequence motif present in the vast majority of downregulated microRNAs identified in this study. Our data thus suggest specific common denominators regarding molecular pathogenesis of different amyotrophic lateral sclerosis genes. We describe the earliest pathomolecular alterations in amyotrophic lateral sclerosis mutation carriers known to date, which provide a basis for the discovery of novel therapeutic targets and strongly argue for studies evaluating presymptomatic disease-modifying treatment in amyotrophic lateral sclerosis.


1993 ◽  
Vol 13 (5) ◽  
pp. 3002-3014
Author(s):  
K Kudrycki ◽  
C Stein-Izsak ◽  
C Behn ◽  
M Grillo ◽  
R Akeson ◽  
...  

We report characterization of several domains within the 5' flanking region of the olfactory marker protein (OMP) gene that may participate in regulating transcription of this and other olfactory neuron-specific genes. Analysis by electrophoretic mobility shift assay and DNase I footprinting identifies two regions that contain a novel sequence motif. Interactions between this motif and nuclear proteins were detected only with nuclear protein extracts derived from olfactory neuroepithelium, and this activity is more abundant in olfactory epithelium enriched in immature neurons. We have designated a factor(s) involved in this binding as Olf-1. The Olf-1-binding motif consensus sequence was defined as TCCCC(A/T)NGGAG. Studies with transgenic mice indicate that a 0.3-kb fragment of the OMP gene containing one Olf-1 motif is sufficient for olfactory tissue-specific expression of the reporter gene. Some of the other identified sequence motifs also interact specifically with olfactory nuclear protein extracts. We propose that Olf-1 is a novel, olfactory neuron-specific trans-acting factor involved in the cell-specific expression of OMP.


Peptides ◽  
2018 ◽  
Vol 107 ◽  
pp. 61-67 ◽  
Author(s):  
Bingzheng Shen ◽  
Jinchun Song ◽  
Yonghui Zhao ◽  
Yaoyun Zhang ◽  
Gaomin Liu ◽  
...  

1979 ◽  
Vol 57 (6) ◽  
pp. 561-567 ◽  
Author(s):  
G. Touraud ◽  
J. F. Bousquet

Ochracine was isolated from culture filtrates of Septoria nodorum Berk. (Berk.), a pathogenic fungus of wheat. At concentrations ranging from 25 μg/mL it inhibited the growth of wheat and rice seedlings and the 'de novo' synthesis of α-amylases by the aleurone layers of wheat. These effects were not reversed by increased concentrations of gibberellic acid.Between 2.5 and 10 μg/mL, ochracine exhibited a synergistic effect with exogenous gibberellic acid on the same physiological phenomena. For these last concentrations, the results suggest an increased sensitivity of rice seedlings and wheat aleurone layers to exogenous gibberellic acid as a result of changes in tissue permeability.


1993 ◽  
Vol 13 (5) ◽  
pp. 3002-3014 ◽  
Author(s):  
K Kudrycki ◽  
C Stein-Izsak ◽  
C Behn ◽  
M Grillo ◽  
R Akeson ◽  
...  

We report characterization of several domains within the 5' flanking region of the olfactory marker protein (OMP) gene that may participate in regulating transcription of this and other olfactory neuron-specific genes. Analysis by electrophoretic mobility shift assay and DNase I footprinting identifies two regions that contain a novel sequence motif. Interactions between this motif and nuclear proteins were detected only with nuclear protein extracts derived from olfactory neuroepithelium, and this activity is more abundant in olfactory epithelium enriched in immature neurons. We have designated a factor(s) involved in this binding as Olf-1. The Olf-1-binding motif consensus sequence was defined as TCCCC(A/T)NGGAG. Studies with transgenic mice indicate that a 0.3-kb fragment of the OMP gene containing one Olf-1 motif is sufficient for olfactory tissue-specific expression of the reporter gene. Some of the other identified sequence motifs also interact specifically with olfactory nuclear protein extracts. We propose that Olf-1 is a novel, olfactory neuron-specific trans-acting factor involved in the cell-specific expression of OMP.


2021 ◽  
Author(s):  
Kyle S. Hoffman ◽  
Baozhen Shan ◽  
Jonathan R. Krieger

AbstractIdentifying antigens displayed specifically on tumour cell surfaces by human leukocyte antigen (HLA) proteins is important for the development of immunotherapies and cancer vaccines. The difficulty in capturing an HLA ligandome stems from the fact that many HLA ligands are derived from splicing events or contain mutations, hindering their identification in a standard database search. To address this challenge, we developed an immunopeptidomics workflow with PEAKS XPro that uses de novo sequencing to uncover such peptides and identifies mutations for neoantigen discovery. We demonstrate the utility of this workflow by re-analyzing HLA-I ligandome datasets and reveal a vast diversity in peptide sequences among clones derived from a colorectal cancer tumour. Over 8000 peptides predicted to bind HLA-I molecules were identified by de novo sequencing only (not found in the UniProt database) and make up over 50% of identified peptides from each sample. Lastly, tumour-specific mutations and consensus sequence motif characteristics are defined. This workflow is widely applicable to any immunopeptidomic mass spectrometry dataset and does not require custom database generation for neoantigen discovery.


2021 ◽  
Author(s):  
Longlong Si ◽  
Haiqing Bai ◽  
Crystal Yuri Oh ◽  
Tian Zhang ◽  
Amanda Jiang ◽  
...  

The current COVID-19 pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III), in a wide range of human cell types. These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique conserved sequence motif (sense strand: 5'-C, antisense strand: 3'-GGG) that mediates end-to-end dimer self-assembly of these RNAs by Hoogsteen G-G base-pairing. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory siRNAs, their activity is independent of TLR7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad spectrum inhibition of infections by many respiratory viruses with pandemic potential, including SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A, as well as the common cold virus HCoV-NL63 in both cell lines and human Lung Chips that mimic organ-level lung pathophysiology. These short dsRNAs can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics at low cost.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1934
Author(s):  
Lamya H. Al-Wahaibi ◽  
Natalia Alvarez ◽  
Olivier Blacque ◽  
Nicolás Veiga ◽  
Aamal A. Al-Mutairi ◽  
...  

Two new N′-heteroarylidene-1-carbohydrazide derivatives, namely; E-N′-[(pyridine-3-yl)methylidene]adamantane-1-carbohydrazide (1) and E-N′-[(5-nitrothiophen-2-yl)methylidene]adamantane-1-carbohydrazide (2), were produced via condensation of adamantane-1-carbohydrazide with the appropriate heterocyclic aldehyde. Both compounds were chemically and structurally characterized by 1H-NMR, 13C-NMR, infrared and UV-vis spectroscopies, and single crystal X-ray diffraction. The study was complemented with density functional theory calculations (DFT). The results show an asymmetrical charge distribution in both compounds, with the electron density accumulated around the nitrogen and oxygen atoms, leaving the positive charge surrounding the N-H and C-H bonds in the hydrazine group. Consequently, the molecules stack in an antiparallel fashion in the crystalline state, although the contribution of the polar contacts to the stability of the lattice is different for 1 (18%) and 2 (42%). This difference affects the density and symmetry of their crystal structures. Both molecules show intense UV-Vis light absorption in the range 200–350 nm (1) and 200–500 nm (2), brought about by π → π* electronic transitions. The electron density difference maps (EDDM) revealed that during light absorption, the electron density flows within the π-delocalized system, among the pyridyl/thiophene ring, the nitro group, and the N′-methyleneacetohydrazide moiety. Interestingly, compounds 1 and 2 constitute broad-spectrum antibacterial candidates, displaying potent antibacterial activity with minimal inhibitory concentration (MIC) values around 0.5–2.0 μg/mL. They also show weak or moderate antifungal activity against the yeast-like pathogenic fungus Candida albicans.


1992 ◽  
Vol 102 (1) ◽  
pp. 31-41 ◽  
Author(s):  
P.D. Kouklis ◽  
P. Traub ◽  
S.D. Georgatos

Nearly all intermediate filament (IF) proteins share two sequence motifs located at the N- and the C-terminal ends of their helical rod domain (‘coil 1a’ and ‘coil 2b’, respectively). To examine the structural role of the coil 2b motif, we have performed in vitro assembly studies and in vivo microinjection experiments employing two site-specific reagents: (a) a 20-residue synthetic peptide (C-2) representing the conserved motif itself and (b) a monoclonal antibody (anti-IFA) that recognises an epitope within the conserved coil 2b sequence. We demonstrate here that vimentin protofilaments, when induced to assemble in the presence of C-2 or anti-IFA, show a lower propensity to polymerise and yield various abberant structures. The few filaments that are formed under these conditions appear much shorter than normal IFs and are unravelled or aggregated. Furthermore, when preformed vimentin filaments are exposed to C-2 or anti-IFA, most of the normal IFs are converted into shorter filamentous forms that possess an abberant morphology. None of these effects is seen when vimentin subunits are coincubated with control peptides. Microinjection of anti-IFA into the cytoplasm of interphasic 3T3 cells provokes collapse of vimentin IFs into a juxtanuclear mass and formation of numerous amorphous aggregates distributed throughout the cytoplasm. These two effects are not seen when the anti-IFA is microinjected into the cell nucleus. Our results provide experimental evidence supporting previous suggestions for a role for the conserved coil 2b sequence in filament assembly. We propose that this region is interacting with other sites along the vimentin molecule and that these interactions are essential for proper protofilament-protofilament alignment and filament stability.


Sign in / Sign up

Export Citation Format

Share Document