Microstructural differences in visual white matter tracts in people with aniridia

Neuroreport ◽  
2018 ◽  
Vol 29 (17) ◽  
pp. 1473-1478 ◽  
Author(s):  
Courtney R. Burton ◽  
David J. Schaeffer ◽  
Anastasia M. Bobilev ◽  
Jordan E. Pierce ◽  
Amanda L. Rodrigue ◽  
...  
2010 ◽  
Vol 41 (01) ◽  
Author(s):  
J Faber ◽  
JC Schöne-Bake ◽  
C Melzer ◽  
M Tittgemeyer ◽  
B Weber

2019 ◽  
Author(s):  
Justin C. Hayes ◽  
Katherine L Alfred ◽  
Rachel Pizzie ◽  
Joshua S. Cetron ◽  
David J. M. Kraemer

Modality specific encoding habits account for a significant portion of individual differences reflected in functional activation during cognitive processing. Yet, little is known about how these habits of thought influence long-term structural changes in the brain. Traditionally, habits of thought have been assessed using self-report questionnaires such as the visualizer-verbalizer questionnaire. Here, rather than relying on subjective reports, we measured habits of thought using a novel behavioral task assessing attentional biases toward picture and word stimuli. Hypothesizing that verbal habits of thought are reflected in the structural integrity of white matter tracts and cortical regions of interest, we used diffusion tensor imaging and volumetric analyses to assess this prediction. Using a whole-brain approach, we show that word bias is associated with increased volume in several bilateral language regions, in both white and grey matter parcels. Additionally, connectivity within white matter tracts within an a priori speech production network increased as a function of word bias. These results demonstrate long-term structural and morphological differences associated with verbal habits of thought.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reza Tadayonnejad ◽  
Fabrizio Pizzagalli ◽  
Stuart B. Murray ◽  
Wolfgang M. Pauli ◽  
Geena Conde ◽  
...  

AbstractAnorexia nervosa (AN) is a difficult to treat, pernicious psychiatric disorder that has been linked to decision-making abnormalities. We examined the structural characteristics of habitual and goal-directed decision-making circuits and their connecting white matter tracts in 32 AN and 43 healthy controls across two independent data sets of adults and adolescents as an explanatory sub-study. Total bilateral premotor/supplementary motor area-putamen tracts in the habit circuit had a significantly higher volume in adults with AN, relative to controls. Positive correlations were found between both the number of tracts and white matter volume (WMV) in the habit circuit, and the severity of ritualistic/compulsive behaviors in adults and adolescents with AN. Moreover, we found a significant influence of the habit circuit WMV on AN ritualistic/compulsive symptom severity, depending on the preoccupations symptom severity levels. These findings suggest that AN is associated with white matter plasticity alterations in the habit circuit. The association between characteristics of habit circuit white matter tracts and AN behavioral symptoms provides support for a circuit based neurobiological model of AN, and identifies the habit circuit as a focus for further investigation to aid in development of novel and more effective treatments based on brain-behavior relationships.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Patricia Álvarez ◽  
Ester Blasco ◽  
Martí Pumarola ◽  
Annette Wessmann

Abstract Background Aquaporin-4 (AQP4) is in growing recognition as potential marker for cancer progression, differentiation and therapeutic intervention. No information is available about AQP4 expression in the normal canine brain. The aim of this histopathological study is to confirm the presence of AQP4 by immunohistochemistry technique in a group of non-pathological canine brains and to describe its expression and distribution across the brain. Results Twelve non-pathological canine brains of various ages (ranging from 21 days to 17 years) and breeds were included in the study. Immunohistochemical expression of AQP4 was analyzed using formalin-fixed paraffin-embedded brain tissue sections. The findings were correlated between AQP4 expressing cells and astrocytes using glial fibrillary acidic protein (GFAP). AQP4 expression was more marked in the astrocyte foot processes of subpial, perivascular and periventricular surfaces in all specimens. The majority of the canine brain sections (9/12) presented with an AQP4 predilection for white matter tracts. Interestingly, the two youngest dogs (21 days and 3 months old) were characterized by diffuse AQP4 labelling in both grey and white matter tracts. This result may suggest that brain development and ageing may play a role in the AQP4 distribution throughout the canine brain. Conclusions This is the first study to describe immunohistochemical distribution of AQP4 in normal canine brains. The AQP4 expression and distribution in non-pathological canine brains was comparable to other species. Larger studies are needed to substantiate the influence of breed and ageing on AQP4 expression in the normal canine brain.


Author(s):  
Eric L. Goldwaser ◽  
Joshua Chiappelli ◽  
Mark D. Kvarta ◽  
Xiaoming Du ◽  
Zachary B. Millman ◽  
...  

AbstractStress is implicated in psychosis etiology and exacerbation, but pathogenesis toward brain network alterations in schizophrenia remain unclear. White matter connects limbic and prefrontal regions responsible for stress response regulation, and white matter tissues are also vulnerable to glucocorticoid aberrancies. Using a novel psychological stressor task, we studied cortisol stress responses over time and white matter microstructural deficits in schizophrenia spectrum disorder (SSD). Cortisol was measured at baseline, 0-, 20-, and 40-min after distress induction by a psychological stressor task in 121 SSD patients and 117 healthy controls (HC). White matter microstructural integrity was measured by 64-direction diffusion tensor imaging. Fractional anisotropy (FA) in white matter tracts were related to cortisol responses and then compared to general patterns of white matter tract deficits in SSD identified by mega-analysis. Differences between 40-min post-stress and baseline, but not acute reactivity post-stress, was significantly elevated in SSD vs HC, time × diagnosis interaction F2.3,499.9 = 4.1, p = 0.013. All SSD white matter tracts were negatively associated with prolonged cortisol reactivity but all tracts were positively associated with prolonged cortisol reactivity in HC. Individual tracts most strongly associated with prolonged cortisol reactivity were also most impacted in schizophrenia in general as established by the largest schizophrenia white matter study (r = −0.56, p = 0.006). Challenged with psychological stress, SSD and HC mount similar cortisol responses, and impairments arise in the resolution timeframe. Prolonged cortisol elevations are associated with the white matter deficits in SSD, in a pattern previously associated with schizophrenia in general.


2020 ◽  
Vol 117 (18) ◽  
pp. 10035-10044
Author(s):  
Xiaojie Wang ◽  
Verginia C. Cuzon Carlson ◽  
Colin Studholme ◽  
Natali Newman ◽  
Matthew M. Ford ◽  
...  

One factor that contributes to the high prevalence of fetal alcohol spectrum disorder (FASD) is binge-like consumption of alcohol before pregnancy awareness. It is known that treatments are more effective with early recognition of FASD. Recent advances in retrospective motion correction for the reconstruction of three-dimensional (3D) fetal brain MRI have led to significant improvements in the quality and resolution of anatomical and diffusion MRI of the fetal brain. Here, a rhesus macaque model of FASD, involving oral self-administration of 1.5 g/kg ethanol per day beginning prior to pregnancy and extending through the first 60 d of a 168-d gestational term, was utilized to determine whether fetal MRI could detect alcohol-induced abnormalities in brain development. This approach revealed differences between ethanol-exposed and control fetuses at gestation day 135 (G135), but not G110 or G85. At G135, ethanol-exposed fetuses had reduced brainstem and cerebellum volume and water diffusion anisotropy in several white matter tracts, compared to controls. Ex vivo electrophysiological recordings performed on fetal brain tissue obtained immediately following MRI demonstrated that the structural abnormalities observed at G135 are of functional significance. Specifically, spontaneous excitatory postsynaptic current amplitudes measured from individual neurons in the primary somatosensory cortex and putamen strongly correlated with diffusion anisotropy in the white matter tracts that connect these structures. These findings demonstrate that exposure to ethanol early in gestation perturbs development of brain regions associated with motor control in a manner that is detectable with fetal MRI.


2015 ◽  
Vol 37 (2) ◽  
pp. 115-130 ◽  
Author(s):  
Beth A. Costine ◽  
Symeon Missios ◽  
Sabrina R. Taylor ◽  
Declan McGuone ◽  
Colin M. Smith ◽  
...  

Stimulation of postnatal neurogenesis in the subventricular zone (SVZ) and robust migration of neuroblasts to the lesion site in response to traumatic brain injury (TBI) is well established in rodent species; however, it is not yet known whether postnatal neurogenesis plays a role in repair after TBI in gyrencephalic species. Here we describe the anatomy of the SVZ in the piglet for the first time and initiate an investigation into the effect of TBI on the SVZ architecture and the number of neuroblasts in the white matter. Among all ages of immaturity examined the SVZ contained a dense mesh network of neurogenic precursor cells (doublecortin+) positioned directly adjacent to the ependymal cells (ventricular SVZ, Vsvz) and neuroblasts organized into chains that were distinct from the Vsvz (abventricular SVZ, Asvz). Though the architecture of the SVZ was similar among ages, the areas of Vsvz and Asvz neuroblast chains declined with age. At postnatal day (PND) 14 the white matter tracts have a tremendous number of individual neuroblasts. In our scaled cortical impact model, lesion size increased with age. Similarly, the response of the SVZ to injury was also age dependent. The younger age groups that sustained the proportionately smallest lesions had the largest SVZ areas, which further increased in response to injury. In piglets that were injured at 4 months of age and had the largest lesions, the SVZ did not increase in response to injury. Similar to humans, swine have abundant gyri and gyral white matter, providing a unique platform to study neuroblasts potentially migrating from the SVZ to the lesioned cortex along these white matter tracts. In piglets injured at PND 7, TBI did not increase the total number of neuroblasts in the white matter compared to uninjured piglets, but redistribution occurred with a greater number of neuroblasts in the white matter of the hemisphere ipsilateral to the injury compared to the contralateral hemisphere. At 7 days after injury, less than 1% of neuroblasts in the white matter were born in the 2 days following injury. These data show that the SVZ in the piglet shares many anatomical similarities with the SVZ in the human infant, and that TBI had only modest effects on the SVZ and the number of neuroblasts in the white matter. Piglets at an equivalent developmental stage to human infants were equipped with the largest SVZ and a tremendous number of neuroblasts in the white matter, which may be sufficient in lesion repair without the dramatic stimulation of neurogenic machinery. It has yet to be determined whether neurogenesis and migrating neuroblasts play a role in repair after TBI and/or whether an alteration of normal migration during active postnatal population of brain regions is beneficial in species with gyrencephalic brains.


Sign in / Sign up

Export Citation Format

Share Document