scholarly journals Stable hovering of a jellyfish-like flying machine

2014 ◽  
Vol 11 (92) ◽  
pp. 20130992 ◽  
Author(s):  
Leif Ristroph ◽  
Stephen Childress

Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.

1999 ◽  
Vol 202 (7) ◽  
pp. 845-853
Author(s):  
J. Brackenbury

The kinematics of locomotion was investigated in the aquatic larvae of Dixella aestivalis and Hydrobius fuscipes with the aid of high-speed video recordings. Both insects are able to skate on the surface of the water using the dorso-apical tracheal gill as an adhesive organ or ‘foot’. Progress relies on the variable adhesion of the foot between ‘slide’ and ‘hold’ periods of the locomotory cycle. The flexural body movements underlying skating in D. aestivalis can be derived directly from the figure-of-eight swimming mechanism used in underwater swimming. The latter is shown to be similar to figure-of-eight swimming in chironomid larvae. This study shows how the deployment of a ‘foot’ enables simple side-to-side flexural movements of the body to be converted into effective locomotion at the air-water interface.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 78
Author(s):  
Kacie T. M. Niimoto ◽  
Kyleigh J. Kuball ◽  
Lauren N. Block ◽  
Petra H. Lenz ◽  
Daisuke Takagi

Copepods are agile microcrustaceans that are capable of maneuvering freely in water. However, the physical mechanisms driving their rotational motion are not entirely clear in small larvae (nauplii). Here we report high-speed video observations of copepod nauplii performing acrobatic feats with three pairs of appendages. Our results show rotations about three principal axes of the body: yaw, roll, and pitch. The yaw rotation turns the body to one side and results in a circular swimming path. The roll rotation consists of the body spiraling around a nearly linear path, similar to an aileron roll of an airplane. We interpret the yaw and roll rotations to be facilitated by appendage pronation or supination. The pitch rotation consists of flipping on the spot in a maneuver that resembles a backflip somersault. The pitch rotation involved tail bending and was not observed in the earliest stages of nauplii. The maneuvering strategies adopted by plankton may inspire the design of microscopic robots, equipped with suitable controls for reorienting autonomously in three dimensions.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 873
Author(s):  
Gaspare Pavei ◽  
Dario Cazzola ◽  
Antonio La Torre ◽  
Alberto E. Minetti

Race walking has been theoretically described as a walking gait in which no flight time is allowed and high travelling speed, comparable to running (3.6–4.2 m s−1), is achieved. The aim of this study was to mechanically understand such a “hybrid gait” by analysing the ground reaction forces (GRFs) generated in a wide range of race walking speeds, while comparing them to running and walking. Fifteen athletes race-walked on an instrumented walkway (4 m) and three-dimensional GRFs were recorded at 1000 Hz. Subjects were asked to performed three self-selected speeds corresponding to a low, medium and high speed. Peak forces increased with speeds and medio-lateral and braking peaks were higher than in walking and running, whereas the vertical peaks were higher than walking but lower than running. Vertical GRF traces showed two characteristic patterns: one resembling the “M-shape” of walking and the second characterised by a first peak and a subsequent plateau. These different patterns were not related to the athletes’ performance level. The analysis of the body centre of mass trajectory, which reaches its vertical minimum at mid-stance, showed that race walking should be considered a bouncing gait regardless of the presence or absence of a flight phase.


2013 ◽  
Vol 10 (89) ◽  
pp. 20130808 ◽  
Author(s):  
Mao Wei Chen ◽  
Yan Lai Zhang ◽  
Mao Sun

Here, we present a detailed analysis of the take-off mechanics in droneflies performing voluntary take-offs. Wing and body kinematics of the insects during take-off were measured using high-speed video techniques. Based on the measured data, the inertia force acting on the insect was computed and the aerodynamic force of the wings was calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. In take-off, a dronefly increases its stroke amplitude gradually in the first 10–14 wingbeats and becomes airborne at about the 12th wingbeat. The aerodynamic force increases monotonously from zero to a value a little larger than its weight, and the leg force decreases monotonously from a value equal to its weight to zero, showing that the droneflies do not jump and only use aerodynamic force of flapping wings to lift themselves into the air. Compared with take-offs in insects in previous studies, in which a very large force (5–10 times of the weight) generated either by jumping legs (locusts, milkweed bugs and fruit flies) or by the ‘fling’ mechanism of the wing pair (butterflies) is used in a short time, the take-off in the droneflies is relatively slow but smoother.


2014 ◽  
Vol 64 (3) ◽  
pp. 239-260
Author(s):  
Corstiaen P.C. Versteegh ◽  
Mees Muller

Aquatic organisms have to deal with different hydrodynamic regimes, depending on their size and speed during locomotion. The pea crab swims by beating the third and fourth pereiopod on opposite sides as pairs. Using particle tracking velocimetry and high-speed video recording, we quantify the kinematics and vortices in the wake of the pea crab. Where the proximal parts of the pereiopods beat in antiphase, their distal parts show an overlapping beat period. By using four instead of two limbs for propulsion, an uninterrupted forward movement is established, reducing the influence of the acceleration reaction. Before body speed is maximal, force generation of the pereiopods seems most active when passing an orthogonal position with the body.


2019 ◽  
Vol 85 (6) ◽  
pp. 53-63 ◽  
Author(s):  
I. E. Vasil’ev ◽  
Yu. G. Matvienko ◽  
A. V. Pankov ◽  
A. G. Kalinin

The results of using early damage diagnostics technique (developed in the Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) for detecting the latent damage of an aviation panel made of composite material upon bench tensile tests are presented. We have assessed the capabilities of the developed technique and software regarding damage detection at the early stage of panel loading in conditions of elastic strain of the material using brittle strain-sensitive coating and simultaneous crack detection in the coating with a high-speed video camera “Video-print” and acoustic emission system “A-Line 32D.” When revealing a subsurface defect (a notch of the middle stringer) of the aviation panel, the general concept of damage detection at the early stage of loading in conditions of elastic behavior of the material was also tested in the course of the experiment, as well as the software specially developed for cluster analysis and classification of detected location pulses along with the equipment and software for simultaneous recording of video data flows and arrays of acoustic emission (AE) data. Synchronous recording of video images and AE pulses ensured precise control of the cracking process in the brittle strain-sensitive coating (tensocoating)at all stages of the experiment, whereas the use of structural-phenomenological approach kept track of the main trends in damage accumulation at different structural levels and identify the sources of their origin when classifying recorded AE data arrays. The combined use of oxide tensocoatings and high-speed video recording synchronized with the AE control system, provide the possibility of definite determination of the subsurface defect, reveal the maximum principal strains in the area of crack formation, quantify them and identify the main sources of AE signals upon monitoring the state of the aviation panel under loading P = 90 kN, which is about 12% of the critical load.


1959 ◽  
Vol 63 (585) ◽  
pp. 508-512 ◽  
Author(s):  
K. W. Mangler

When a body moves through air at very high speed at such a height that the air can be considered as a continuum, the distinction between sharp and blunt noses with their attached or detached bow shocks loses its significance, since, in practical cases, the bow wave is always detached and fairly strong. In practice, all bodies behave as blunt shapes with a smaller or larger subsonic region near the nose where the entropy and the corresponding loss of total head change from streamline to streamline due to the curvature of the bow shock. These entropy gradients determine the behaviour of the hypersonic flow fields to a large extent. Even in regions where viscosity effects are small they give rise to gradients of the velocity and shear layers with a lower velocity and a higher entropy near the surface than would occur in their absence. Thus one can expect to gain some relief in the heating problems arising on the surface of the body. On the other hand, one would lose farther downstream on long slender shapes as more and more air of lower entropy is entrained into the boundary layer so that the heat transfer to the surface goes up again. Both these flow regions will be discussed here for the simple case of a body of axial symmetry at zero incidence. Finally, some remarks on the flow field past a lifting body will be made. Recently, a great deal of information on these subjects has appeared in a number of reviewing papers so that little can be added. The numerical results on the subsonic flow regions in Section 2 have not been published before.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 593
Author(s):  
Ryota Yanagisawa ◽  
Shunsuke Shigaki ◽  
Kotaro Yasui ◽  
Dai Owaki ◽  
Yasuhiro Sugimoto ◽  
...  

In this study, we fabricated a novel wearable vibration sensor for insects and measured their wing flapping. An analysis of insect wing deformation in relation to changes in the environment plays an important role in understanding the underlying mechanism enabling insects to dynamically interact with their surrounding environment. It is common to use a high-speed camera to measure the wing flapping; however, it is difficult to analyze the feedback mechanism caused by the environmental changes caused by the flapping because this method applies an indirect measurement. Therefore, we propose the fabrication of a novel film sensor that is capable of measuring the changes in the wingbeat frequency of an insect. This novel sensor is composed of flat silver particles admixed with a silicone polymer, which changes the value of the resistor when a bending deformation occurs. As a result of attaching this sensor to the wings of a moth and a dragonfly and measuring the flapping of the wings, we were able to measure the frequency of the flapping with high accuracy. In addition, as a result of simultaneously measuring the relationship between the behavior of a moth during its search for an odor source and its wing flapping, it became clear that the frequency of the flapping changed depending on the frequency of the odor reception. From this result, a wearable film sensor for an insect that can measure the displacement of the body during a particular behavior was fabricated.


Sign in / Sign up

Export Citation Format

Share Document