Extension of Stroh's formalism to self-similar problems in two-dimensional elastodynamics

Author(s):  
Kunag–Chong Wu
Author(s):  
T. T. C. Ting

In this chapter we study Stroh's sextic formalism for two-dimensional deformations of an anisotropic elastic body. The Stroh formalism can be traced to the work of Eshelby, Read, and Shockley (1953). We therefore present the latter first. Not all results presented in this chapter are due to Stroh (1958, 1962). Nevertheless we name the sextic formalism after Stroh because he laid the foundations for researchers who followed him. The derivation of Stroh's formalism is rather simple and straightforward. The general solution resembles that obtained by the Lekhnitskii formalism. However, the resemblance between the two formalisms stops there. As we will see in the rest of the book, the Stroh formalism is indeed mathematically elegant and technically powerful in solving two-dimensional anisotropic elasticity problems. The possibility of extending the formalism to three-dimensional deformations is explored in Chapter 15.


2015 ◽  
Vol 82 (7) ◽  
Author(s):  
H. Song ◽  
R. J. Dikken ◽  
L. Nicola ◽  
E. Van der Giessen

Part of the friction between two rough surfaces is due to the interlocking between asperities on opposite surfaces. In order for the surfaces to slide relative to each other, these interlocking asperities have to deform plastically. Here, we study the unit process of plastic ploughing of a single micrometer-scale asperity by means of two-dimensional dislocation dynamics simulations. Plastic deformation is described through the generation, motion, and annihilation of edge dislocations inside the asperity as well as in the subsurface. We find that the force required to plough an asperity at different ploughing depths follows a Gaussian distribution. For self-similar asperities, the friction stress is found to increase with the inverse of size. Comparison of the friction stress is made with other two contact models to show that interlocking asperities that are larger than ∼2 μm are easier to shear off plastically than asperities with a flat contact.


2014 ◽  
Vol 24 (06) ◽  
pp. 1430017 ◽  
Author(s):  
M. Fernández-Guasti

The quadratic iteration is mapped using a nondistributive real scator algebra in three dimensions. The bound set S has a rich fractal-like boundary. Periodic points on the scalar axis are necessarily surrounded by off axis divergent magnitude points. There is a one-to-one correspondence of this set with the bifurcation diagram of the logistic map. The three-dimensional S set exhibits self-similar 3D copies of the elementary fractal along the negative scalar axis. These 3D copies correspond to the windows amid the chaotic behavior of the logistic map. Nonetheless, the two-dimensional projection becomes identical to the nonfractal quadratic iteration produced with hyperbolic numbers. Two- and three-dimensional renderings are presented to explore some of the features of this set.


Sign in / Sign up

Export Citation Format

Share Document