An Intrinsically Three-Dimensional Fractal

2014 ◽  
Vol 24 (06) ◽  
pp. 1430017 ◽  
Author(s):  
M. Fernández-Guasti

The quadratic iteration is mapped using a nondistributive real scator algebra in three dimensions. The bound set S has a rich fractal-like boundary. Periodic points on the scalar axis are necessarily surrounded by off axis divergent magnitude points. There is a one-to-one correspondence of this set with the bifurcation diagram of the logistic map. The three-dimensional S set exhibits self-similar 3D copies of the elementary fractal along the negative scalar axis. These 3D copies correspond to the windows amid the chaotic behavior of the logistic map. Nonetheless, the two-dimensional projection becomes identical to the nonfractal quadratic iteration produced with hyperbolic numbers. Two- and three-dimensional renderings are presented to explore some of the features of this set.

1993 ◽  
Vol 03 (02) ◽  
pp. 399-404 ◽  
Author(s):  
T. SÜNNER ◽  
H. SAUERMANN

Nonlinear self-excited oscillations are usually investigated for two-dimensional models. We extend the simplest and best known of these models, the van der Pol oscillator, to a three-dimensional one and study its dynamical behaviour by methods of bifurcation analysis. We find cusps and other local codimension 2 bifurcations. A homoclinic (i.e. global) bifurcation plays an important role in the bifurcation diagram. Finally it is demonstrated that chaos sets in. Thus the system belongs to the few three-dimensional autonomous ones modelling physical situations which lead to chaotic behavior.


2016 ◽  
Vol 26 (01) ◽  
pp. 1630002 ◽  
Author(s):  
M. Fernández-Guasti

The quadratic iteration is mapped within a nondistributive imaginary scator algebra in [Formula: see text] dimensions. The Mandelbrot set is identically reproduced at two perpendicular planes where only the scalar and one of the hypercomplex scator director components are present. However, the bound three-dimensional S set projections change dramatically even for very small departures from zero of the second hypercomplex plane. The S set exhibits a rich fractal-like boundary in three dimensions. Periodic points with period [Formula: see text], are shown to be necessarily surrounded by points that produce a divergent magnitude after [Formula: see text] iterations. The scator set comprises square nilpotent elements that ineluctably belong to the bound set. Points that are square nilpotent on the [Formula: see text]th iteration, have preperiod 1 and period [Formula: see text]. Two-dimensional plots are presented to show some of the main features of the set. A three-dimensional rendering reveals the highly complex structure of its boundary.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.


2018 ◽  
Vol 28 (04) ◽  
pp. 1830011
Author(s):  
Mio Kobayashi ◽  
Tetsuya Yoshinaga

A one-dimensional Gaussian map defined by a Gaussian function describes a discrete-time dynamical system. Chaotic behavior can be observed in both Gaussian and logistic maps. This study analyzes the bifurcation structure corresponding to the fixed and periodic points of a coupled system comprising two Gaussian maps. The bifurcation structure of a mutually coupled Gaussian map is more complex than that of a mutually coupled logistic map. In a coupled Gaussian map, it was confirmed that after a stable fixed point or stable periodic points became unstable through the bifurcation, the points were able to recover their stability while the system parameters were changing. Moreover, we investigated a parameter region in which symmetric and asymmetric stable fixed points coexisted. Asymmetric unstable fixed point was generated by the [Formula: see text]-type branching of a symmetric stable fixed point. The stability of the unstable fixed point could be recovered through period-doubling and tangent bifurcations. Furthermore, a homoclinic structure related to the occurrence of chaotic behavior and invariant closed curves caused by two-periodic points was observed. The mutually coupled Gaussian map was merely a two-dimensional dynamical system; however, chaotic itinerancy, known to be a characteristic property associated with high-dimensional dynamical systems, was observed. The bifurcation structure of the mutually coupled Gaussian map clearly elucidates the mechanism of chaotic itinerancy generation in the two-dimensional coupled map. We discussed this mechanism by comparing the bifurcation structures of the Gaussian and logistic maps.


1993 ◽  
Vol 69 (3) ◽  
pp. 965-979 ◽  
Author(s):  
K. Hepp ◽  
A. J. Van Opstal ◽  
D. Straumann ◽  
B. J. Hess ◽  
V. Henn

1. Although the eye has three rotational degrees of freedom, eye positions, during fixations, saccades, and smooth pursuit, with the head stationary and upright, are constrained to a plane by ListingR's law. We investigated whether Listing's law for rapid eye movements is implemented at the level of the deeper layers of the superior colliculus (SC). 2. In three alert rhesus monkeys we tested whether the saccadic motor map of the SC is two dimensional, representing oculocentric target vectors (the vector or V-model), or three dimensional, representing the coordinates of the rotation of the eye from initial to final position (the quaternion or Q-model). 3. Monkeys made spontaneous saccadic eye movements both in the light and in the dark. They were also rotated about various axes to evoke quick phases of vestibular nystagmus, which have three degrees of freedom. Eye positions were measured in three dimensions with the magnetic search coil technique. 4. While the monkey made spontaneous eye movements, we electrically stimulated the deeper layers of the SC and elicited saccades from a wide range of initial positions. According to the Q-model, the torsional component of eye position after stimulation should be uniquely related to saccade onset position. However, stimulation at 110 sites induced no eye torsion, in line with the prediction of the V-model. 5. Activity of saccade-related burst neurons in the deeper layers of the SC was analyzed during rapid eye movements in three dimensions. No systematic eye-position dependence of the movement fields, as predicted by the Q-model, could be detected for these cells. Instead, the data fitted closely the predictions made by the V-model. 6. In two monkeys, both SC were reversibly inactivated by symmetrical bilateral injections of muscimol. The frequency of spontaneous saccades in the light decreased dramatically. Although the remaining spontaneous saccades were slow, Listing's law was still obeyed, both during fixations and saccadic gaze shifts. In the dark, vestibularly elicited fast phases of nystagmus could still be generated in three dimensions. Although the fastest quick phases of horizontal and vertical nystagmus were slower by about a factor of 1.5, those of torsional quick phases were unaffected. 7. On the basis of the electrical stimulation data and the properties revealed by the movement field analysis, we conclude that the collicular motor map is two dimensional. The reversible inactivation results suggest that the SC is not the site where three-dimensional fast phases of vestibular nystagmus are generated.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Nicholas H. Wasserman

Contemporary technologies have impacted the teaching and learning of mathematics in significant ways, particularly through the incorporation of dynamic software and applets. Interactive geometry software such as Geometers Sketchpad (GSP) and GeoGebra has transformed students' ability to interact with the geometry of plane figures, helping visualize and verify conjectures. Similar to what GSP and GeoGebra have done for two-dimensional geometry in mathematics education, SketchUp™ has the potential to do for aspects of three-dimensional geometry. This chapter provides example cases, aligned with the Common Core State Standards in mathematics, for how the dynamic and unique features of SketchUp™ can be integrated into the K-12 mathematics classroom to support and aid students' spatial reasoning and knowledge of three-dimensional figures.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xuan Huang ◽  
Lingfeng Liu ◽  
Xiangjun Li ◽  
Minrong Yu ◽  
Zijie Wu

Given that the sequences generated by logistic map are unsecure with a number of weaknesses, including its relatively small key space, uneven distribution, and vulnerability to attack by phase space reconstruction, this paper proposes a new two-dimensional mutual coupled logistic map, which can overcome these weaknesses. Our two-dimensional chaotic map model is simpler than the recently proposed three-dimensional coupled logistic map, whereas the sequence generated by our system is more complex. Furthermore, a new kind of pseudorandom number generator (PRNG) based on the mutual coupled logistic maps is proposed for application. Both statistical tests and security analysis show that our proposed PRNG has good randomness and that it can resist all kinds of attacks. The algorithm speed analysis indicates that PRNG is valuable to practical applications.


Author(s):  
Jeffrey S. Oishi ◽  
Geoffrey M. Vasil ◽  
Morgan Baxter ◽  
Andrew Swan ◽  
Keaton J. Burns ◽  
...  

The magnetorotational instability (MRI) occurs when a weak magnetic field destabilizes a rotating, electrically conducting fluid with inwardly increasing angular velocity. The MRI is essential to astrophysical disc theory where the shear is typically Keplerian. Internal shear layers in stars may also be MRI-unstable, and they take a wide range of profiles, including near-critical. We show that the fastest growing modes of an ideal magnetofluid are three-dimensional provided the shear rate, S , is near the two-dimensional onset value, S c . For a Keplerian shear, three-dimensional modes are unstable above S  ≈ 0.10 S c , and dominate the two-dimensional modes until S  ≈ 2.05 S c . These three-dimensional modes dominate for shear profiles relevant to stars and at magnetic Prandtl numbers relevant to liquid-metal laboratory experiments. Significant numbers of rapidly growing three-dimensional modes remainy well past 2.05 S c . These finding are significant in three ways. First, weakly nonlinear theory suggests that the MRI saturates by pushing the shear rate to its critical value. This can happen for systems, such as stars and laboratory experiments, that can rearrange their angular velocity profiles. Second, the non-normal character and large transient growth of MRI modes should be important whenever three-dimensionality exists. Finally, three-dimensional growth suggests direct dynamo action driven from the linear instability.


1993 ◽  
Vol 132 ◽  
pp. 73-89
Author(s):  
Yi-Sui Sun

AbstractWe have systematically made the numerical exploration about the perturbation extension of area-preserving mappings to three-dimensional ones, in which the fixed points of area preserving are elliptic, parabolic or hyperbolic respectively. It has been observed that: (i) the invariant manifolds in the vicinity of the fixed point generally don’t exist (ii) when the invariant curve of original two-dimensional mapping exists the invariant tubes do also in the neighbourhood of the invariant curve (iii) for the perturbation extension of area-preserving mapping the invariant manifolds can only be generated in the subset of the invariant manifolds of original two-dimensional mapping, (iv) for the perturbation extension of area preserving mappings with hyperbolic or parabolic fixed point the ordered region near and far from the invariant curve will be destroyed by perturbation more easily than the other one, This is a result different from the case with the elliptic fixed point. In the latter the ordered region near invariant curve is solid. Some of the results have been demonstrated exactly.Finally we have discussed the Kolmogorov Entropy of the mappings and studied some applications.


1996 ◽  
Vol 07 (05) ◽  
pp. 717-729 ◽  
Author(s):  
ALEXANDER V. POTAPOV ◽  
CHARLES S. CAMPBELL

This paper describes an extension into three dimensions of an existing two-dimensional technique for simulating brittle solid fracture. The fracture occurs on a simulated solid created by "gluing" together space-filling polyhedral elements with compliant interelement joints. Such a material can be shown to have well-defined elastic properties. However, the "glue" can only support a specified tensile stress and breaks when that stress is exceeded. In this manner, a crack can propagate across the simulated material. A comparison with experiment shows that the simulation can accurately reproduce the size distributions for all fragments with linear dimensions greater than three element sizes.


Sign in / Sign up

Export Citation Format

Share Document