Binomial subsampling

Author(s):  
Carsten Wiuf ◽  
Michael P.H Stumpf

In this paper, we discuss statistical families with the property that if the distribution of a random variable X is in , then so is the distribution of Z ∼Bi( X ,  p ) for 0≤ p ≤1. (Here we take Z ∼Bi( X ,  p ) to mean that given X = x ,  Z is a draw from the binomial distribution Bi( x ,  p ).) It is said that the family is closed under binomial subsampling. We characterize such families in terms of probability generating functions and for families with finite moments of all orders we give a necessary and sufficient condition for the family to be closed under binomial subsampling. The results are illustrated with power series and other examples, and related to examples from mathematical biology. Finally, some issues concerning inference are discussed.

2018 ◽  
Vol 33 (2) ◽  
pp. 83-92
Author(s):  
M. Sreehari ◽  
E. Sandhya ◽  
V. K. Mohamed Akbar

Abstract The reliability properties of beta-transformed random variables are discussed. A necessary and sufficient condition for a beta-transformed geometric random variable to follow a power series distribution is derived. It is shown that a beta-transformed member of the Katz family does not belong to the Katz family unless it is a geometric distribution, thereby getting a characterization.


1972 ◽  
Vol 9 (02) ◽  
pp. 457-461 ◽  
Author(s):  
M. Ahsanullah ◽  
M. Rahman

A necessary and sufficient condition based on order statistics that a positive random variable having an absolutely continuous probability distribution (with respect to Lebesgue measure) will be exponential is given.


2002 ◽  
Vol 30 (12) ◽  
pp. 761-770 ◽  
Author(s):  
Xiao-Xiong Gan ◽  
Nathaniel Knox

Given a formal power seriesg(x)=b0+b1x+b2x2+⋯and a nonunitf(x)=a1x+a2x2+⋯, it is well known that the composition ofgwithf,g(f(x)), is a formal power series. If the formal power seriesfabove is not a nonunit, that is, the constant term offis not zero, the existence of the compositiong(f(x))has been an open problem for many years. The recent development investigated the radius of convergence of a composed formal power series likefabove and obtained some very good results. This note gives a necessary and sufficient condition for the existence of the composition of some formal power series. By means of the theorems established in this note, the existence of the composition of a nonunit formal power series is a special case.


2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Roman A. Veprintsev

AbstractWe establish a necessary and sufficient condition on a continuous function on [-1,1] under which the family of functions on the unit sphere 𝕊


2018 ◽  
Vol 68 (1) ◽  
pp. 173-180
Author(s):  
Renata Wiertelak

Abstract In this paper will be considered density-like points and density-like topology in the family of Lebesgue measurable subsets of real numbers connected with a sequence 𝓙= {Jn}n∈ℕ of closed intervals tending to zero. The main result concerns necessary and sufficient condition for inclusion between that defined topologies.


1997 ◽  
Vol 34 (03) ◽  
pp. 785-789 ◽  
Author(s):  
Chunsheng Ma

A necessary and sufficient condition is obtained for a Poisson binomial random variable to be stochastically larger (or smaller) than a binomial random variable. It is then used to deal with the stochastic comparisons of order statistics from heterogeneous populations with those from a homogeneous population. The result has obvious applications in the stochastic comparisons of lifetimes of k-out-of-n systems having independent components.


1991 ◽  
Vol 02 (03) ◽  
pp. 221-236 ◽  
Author(s):  
A. MONTI ◽  
D. PARENTE

Different systolic tree automata (STA) with base (T(b)−STA) are compared. This is a subclass of STA with interesting properties of modularity. We give a necessary and sufficient condition for the inclusion between classes of languages accepted by T(b)− STA, (L(T(b)−STA)), as b varies. We focus on T(b)−STA obtained by varying the base b in a natural way. We prove that for every base b within this framework there exists an a such that L(T(a)−STA) is not contained in L(T(b)−STA). We characterize the family of languages accepted by T(b)−STA when the input conditions are relaxed. Moreover we show that the emptiness problem is decidable for T(b)−STA.


Author(s):  
Khole Timothy Poumai ◽  
Shah Jahan

Gavruta [L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012) 139–144] introduced the notion of [Formula: see text]-frame and atomic system for an operator [Formula: see text] in Hilbert spaces. We extend these notions to Banach spaces and obtain various new results. A necessary and sufficient condition for the existence of an atomic system for an operator [Formula: see text] in a Banach space is given. Also, a characterization for the family of local atoms of subspaces of Banach spaces has been given. Further, we give methods to construct an atomic system for an operator [Formula: see text] from a given Bessel sequence and an [Formula: see text]-Bessel sequence. Finally, a result related to stability of atomic system for an operator [Formula: see text] in a Banach space has been given.


Author(s):  
Sándor Csörgő

AbstractThe functional least squares procedure of Chambers and Heathcote for estimating the slope parameter in a linear regression model is analysed. Strong uniform consistency for the family of these estimators is proved together with a necessary and sufficient condition for weak convergence in the space of continuous vector valued functions. These results are then used to develop the asymptotic normality of an adaptive version of the functional least squares estimator with minimum limiting variance.


1977 ◽  
Vol 14 (4) ◽  
pp. 702-716 ◽  
Author(s):  
D. R. Grey

If {Zn} is a Galton–Watson branching process with infinite mean, it is shown that under certain conditions there exist constants {cn} and a function L, slowly varying at 0, such that converges almost surely to a non-degenerate random variable, whose distribution function satisfies a certain functional equation. The method is then extended to a continuous-time Markov branching process {Zt} with infinite mean, where it is shown that there is always a function φ, slowly varying at 0, such that converges almost surely to a non-degenerate random variable, and a necessary and sufficient condition is given for this convergence to be equivalent to convergence of for some constant α > 0.


Sign in / Sign up

Export Citation Format

Share Document