Instability modelling of drumlin formation incorporating lee-side cavity growth

Author(s):  
A. C. Fowler

It is proposed that the formation of the subglacial bedforms known as drumlins occurs through an instability associated with the flow of ice over a wet deformable till. We pose a mathematical model that describes this instability, and we solve a simplified version of the model numerically in order to establish the form of finite-amplitude two-dimensional waveforms. A feature of the solutions is that cavities frequently form downstream of the bedforms; we allow the model to cater for this possibility and we provide an efficient numerical method to solve the resulting free boundary problem.

2008 ◽  
Vol 05 (04) ◽  
pp. 785-806
Author(s):  
KAZUAKI NAKANE ◽  
TOMOKO SHINOHARA

A free boundary problem that arises from the physical phenomenon of "peeling a thin tape from a domain" is treated. In this phenomenon, the movement of the tape is governed by a hyperbolic equation and is affected by the peeling front. We are interested in the behavior of the peeling front, especially, the phenomenon of self-excitation vibration. In the present paper, a mathematical model of this phenomenon is proposed. The cause of this vibration is discussed in terms of adhesion.


2019 ◽  
Vol 9 (22) ◽  
pp. 4840
Author(s):  
Yue Chen

This paper starts with a generalized Burton, Cabrera and Frank (BCF) model by considering the energetic contribution of the adjacent terraces to the step chemical potential. We use the linear stability analysis of the quasistatic free-boundary problem for a two-dimensional step separated by broad terraces to study the step-meandering instabilities. The results show that the equilibrium adatom coverage has influence on the morphological instabilities.


1997 ◽  
Vol 309 (2) ◽  
pp. 199-223 ◽  
Author(s):  
Tatsuo Iguchi ◽  
Naoto Tanaka ◽  
Atusi Tani

Sign in / Sign up

Export Citation Format

Share Document