The tabby syndrome in the mouse

1971 ◽  
Vol 179 (1055) ◽  
pp. 139-156 ◽  

The tabby syndrome in the mouse (which is common to the sex-linked gene for tabby and autosomal genes for crinkled and downless) affects the coat, the sinus hairs, the teeth, many glands and some surface features like tail rings, plicae digitales and the papilla vallata of the tongue. All these structures develop by the downgrowth of solid epithelial buds into the underlying mesenchyme. Organs which arise by invagination (like the neural tube or the otic vesicles and certain glands) are not affected by the tabby syndrome. The rudiments of glands and sinus hairs are reduced in size, and if reduction goes beyond a critical point, stunted organs are formed or, more commonly, the rudiments regress altogether. The same is true for the teeth and apparently for the whole syndrome. Measurements show the same situation in Ta ♂♂(and Ta/Ta ♀♀) and in heterozygous Ta / + ♀♀. As in Ta ♂♂ and Ta/Ta ♀♀ there cannot be any doubt that a threshold mechanism is involved, there is no reason to assume that, in Ta / + ♀♀, the identical defects are derived clonally from ancestral cells in which the Xchromosome carrying the normal allele has been inactivated. Whereas the Ta / + phenotype does not give any evidence that the Ta locus is involved in X-chromosome inactivation, the possibility cannot be ruled out that, if inactivation should actually take place on the cellular level, the macroscopic phenotype could be the result of intercellular interactions along with the effects of threshold mechanisms.

Cell Reports ◽  
2019 ◽  
Vol 27 (2) ◽  
pp. 442-454.e5 ◽  
Author(s):  
Alex R.D. Delbridge ◽  
Andrew J. Kueh ◽  
Francine Ke ◽  
Natasha M. Zamudio ◽  
Farrah El-Saafin ◽  
...  

Author(s):  
Vasco M. Barreto ◽  
Nadiya Kubasova ◽  
Clara F. Alves-Pereira ◽  
Anne-Valerie Gendrel

X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.


1988 ◽  
Vol 52 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Sheila Brown ◽  
Sohaila Rastan

SummaryAge-related reactivation of an X-linked gene which maps close to Xce, the X chromosome inactivation centre, has been observed. In five female mice which carried the X-linked coat colour gene Moblo on the reciprocal translocation T(X;16)16H (Searle's translocation), and the wild-type gene on the normal X chromosome, and therefore expressed the Moblo phenotype due to the non-random inactivation characteristic of Searle's translocation, progressive darkening of the coat was observed as the animals aged. This is due to reactivation of the previously inactivated wild-type gene at the Mo locus on the normal X chromosome. As the Mo locus is located 4 cM distal to Xce, the X chromosome inactivation centre, these observations provide evidence of age-related instability of inactivation of an X-linked gene close to the inactivation centre.


2022 ◽  
Vol 23 (2) ◽  
pp. 611
Author(s):  
Chiara Siniscalchi ◽  
Armando Di Palo ◽  
Aniello Russo ◽  
Nicoletta Potenza

Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.


2015 ◽  
Vol 27 (1) ◽  
pp. 140
Author(s):  
J. Y. Hwang ◽  
J.-N. Oh ◽  
D.-K. Lee ◽  
C.-H. Park ◽  
C.-K. Lee

X-chromosome inactivation (XCI) is an epigenetically essential process for balancing dosage of X-linked genes between male and female eutherian. Importance of this complex and species-specific event has been highlighted recently in developmental and stem cell biology. However, the process has been confirmed only in restricted species, even though the species-specific studies are needed for comprehensive understanding of XCI in specific species. XCI is regulated by the various genes, many of which are coded on the X chromosome inactivation centre (XIC). Among the XIC-linked genes, especially non-coding RNA (ncRNA) like XIST, which is master gene for XCI, are known to regulate XIC. But the centre is not identified in various species. In this study, we identified XIC in pig and analysed the dosage differences of XIC-linked gene in porcine embryos. At first, the centre was searched in pig. The genomic length of the porcine XIC was similar to human XIC and the order and coding strand of the counterparts in pig XIC were same as the human XIC-linked genes. However, sequence comparison between human XIC-linked gene and its porcine counterpart showed that ncRNA around XIST were less conserved rather than protein-coding genes. This would be caused by rapid evolution of genomic region harboring ncRNA. The expression of XIC-linked genes was compared between male and female porcine embryonic fibroblast (PEF) to confirm that dosage compensation is completed in PEF. Most of the genes were not expressed sex-specifically, but two genes, XIST and an uncharacterized gene, LOC102165544, were expressed female preferentially in PEF. Interestingly, LOC102165544, which had low sequence homology with human JPX, was expressed about 2-fold higher in female PEF. This means that XIST and LOC102165544 are XCI-escaping genes. Among the XIC-linked genes, CHIC1, XIST, LOC102165544, and RLIM were stably expressed in embryonic stage, and XIST and LOC102165544 were up-regulated after morula formation. As XIST accumulation is a requisite for XCI initiation, expression levels of the 4 genes between male and female blastocysts were compared. Interestingly, expression levels of CHIC1 and RLIM were not different in male and female blastocysts. This means their dosage would be already compensated in porcine blastocyst. Additionally, to confirm loci of the 2 genes CHIC1 and RLIM harbor one of the inactive alleles in female blastocyst, the DNA methylation pattern was examined. One of the CHIC1 alleles was inactive but RLIM CpG site was hypo-methylated in female blastocyst. This would indicate that one of the RLIM alleles is transcriptionally inactivated by chromatin modification rather than by DNA methylation of the allele. Regulatory regions of XIST and LOC102165544 were demethylated in blastocyst and this showed XCI was not finished in porcine blastocyst. Conclusively, our results demonstrate the XCI already occurs in porcine blastocyst at least one gene but it is not completed.This work was supported by Next BioGreen21 program (PJ009493), Rural Development Administration, Republic of Korea.


Development ◽  
2011 ◽  
Vol 138 (8) ◽  
pp. 1541-1550 ◽  
Author(s):  
C. E. Senner ◽  
T. B. Nesterova ◽  
S. Norton ◽  
H. Dewchand ◽  
J. Godwin ◽  
...  

Author(s):  
Е.А. Фонова ◽  
Е.Н. Толмачева ◽  
А.А. Кашеварова ◽  
М.Е. Лопаткина ◽  
К.А. Павлова ◽  
...  

Смещение инактивации Х-хромосомы может быть следствием и маркером нарушения клеточной пролиферации при вариациях числа копий ДНК на Х-хромосоме. Х-сцепленные CNV выявляются как у женщин с невынашиванием беременности и смещением инактивации Х-хромосомы (с частотой 33,3%), так и у пациентов с умственной отсталостью и смещением инактивацией у их матерей (с частотой 40%). A skewed X-chromosome inactivation can be a consequence and a marker of impaired cell proliferation in the presence of copy number variations (CNV) on the X chromosome. X-linked CNVs are detected in women with miscarriages and a skewed X-chromosome inactivation (with a frequency of 33.3%), as well as in patients with intellectual disability and skewed X-chromosome inactivation in their mothers (with a frequency of 40%).


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 919 ◽  
Author(s):  
Viggiano ◽  
Madej-Pilarczyk ◽  
Carboni ◽  
Picillo ◽  
Ergoli ◽  
...  

X-linked Emery–Dreifuss muscular dystrophy (EDMD1) affects approximately 1:100,000 male births. Female carriers are usually asymptomatic but, in some cases, they may present clinical symptoms after age 50 at cardiac level, especially in the form of conduction tissue anomalies. The aim of this study was to evaluate the relation between heart involvement in symptomatic EDMD1 carriers and the X-chromosome inactivation (XCI) pattern. The XCI pattern was determined on the lymphocytes of 30 symptomatic and asymptomatic EDMD1 female carriers—25 familial and 5 sporadic cases—seeking genetic advice using the androgen receptor (AR) methylation-based assay. Carriers were subdivided according to whether they were above or below 50 years of age. A variance analysis was performed to compare the XCI pattern between symptomatic and asymptomatic carriers. The results show that 20% of EDMD1 carriers had cardiac symptoms, and that 50% of these were ≥50 years of age. The XCI pattern was similar in both symptomatic and asymptomatic carriers. Conclusions: Arrhythmias in EDMD1 carriers poorly correlate on lymphocytes to a skewed XCI, probably due to (a) the different embryological origin of cardiac conduction tissue compared to lymphocytes or (b) the preferential loss of atrial cells replaced by fibrous tissue.


Sign in / Sign up

Export Citation Format

Share Document