A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion - Disintegration of raindrops by shockwaves ahead of conical bodies

When an aircraft flies at high speed through rain the impact of raindrops on the forward facing surfaces of the aircraft may cause severe erosion damage depending on the size and number of the drops, the speed of the aircraft and the time of flight in the rain. However, before the raindrops reach the aircraft surface they have to pass through a region where they are subjected to relative air velocities caused by the airflow round the aircraft surface. This is particularly applicable to supersonic flight when, in the region between the shockwaves and the aircraft surface, the raindrops may be exposed to air velocities large enough to disintegrate them. The raindrop disintegration is not an instantaneous event; it takes short but finite time and appears to be an erosion process whereby droplets are torn off the surface of the main drop until it is completely reduced to a fine mist. The degree of disintegration of a drop by the time it reaches the aircraft surface will depend on the magnitude of, and the exposure time to, the air velocity. For supersonic flight this time depends on the distance travelled by the drop between the shockwave and the aircraft surface. The experiments described had the object of determining the time required for high speed airstreams completely to disintegrate water drops. An empirical relation is postulated between D , the drop diameter, V , the airstream velocity and t , the time for complete disintegration. The paper considers a conical body at supersonic velocity in a raindrop environment, the body being of a shape typical of that envisaged for supersonic aircraft design. From the derived empirical relation for the time of disintegration of water drops the size of drops to be completely disintegrated when approaching the surface of cones of different vertex angles has been calculated for a range of flight Mach numbers. An experiment giving partial justification for computed results is described.

The large blades required in the last low pressure stages of modern turbines of 350 MW and above makes them more susceptible to erosion by wet steam owing to the increase in blade tip velocity. A specially developed periscope combined with a cine camera has been used for viewing inside an operating turbine to record the flow of water over the fixed blades and the subsequent formation and stripping of the water drops which then impact on the moving blades causing erosion. The drops had a maximum diameter of 450 /mi and the estimated total mass of the drops impacting on the blades was only a few per cent of the mass flow of water condensed from the steam. This confirms that the condensed steam forms a fog of droplets which are so small that only a very small proportion of them is captured by the turbine surfaces to produce large drops capable of causing erosion. In addition to the direct practical value of these observations, the data provide background information in support of the high speed photographic studies of the drop-forming processes on a blade cascade in the laboratory. Experiments in a steam tunnel in which the turbine low pressure steam conditions can be simulated, indicate that drops of 350 to 1600 /xm leave the trailing edge of a blade and accelerate to a maximum velocity of 70 ft./s over a distance of about 1 in. in the blade wake. They are then caught in the main steam flow, which has a velocity of up to 1200 ft./s, where they are broken up and rapidly accelerated. Analysis of the cine films of observations in a turbine and in the steam tunnel gives the velocities and sizes of the drops causing turbine blade erosion.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012034
Author(s):  
A I Fedyushkin ◽  
A N Rozhkov ◽  
A O Rudenko

Abstract The collision of water drops with a thin cylinder is studied. The droplet flight trajectory and the cylinder axis are mutually perpendicular. In the experiments, the drop diameter is 3 mm, and the diameter of horizontal stainless-steel cylinders is 0.4 and 0.8 mm. The drops are formed by a liquid slowly pumped through a vertical stainless-steel capillary with an outer diameter of 0.8 mm, from which droplets are periodically separated under the action of gravity. The droplet velocity before collision is defined by the distance between the capillary cut and the target (cylinder); in experiments, this distance is approximately 5, 10, and 20 mm. The drop velocities before the impact are estimated in the range of 0.2–0.5 m/s. The collision process is monitored by high-speed video recording methods with a frame rate of 240 and 960 Hz. The test liquids are water. Experiments and numerical simulation show that, depending on the drop impact height (droplets velocity) different scenarios of a drop collision with a thin cylinder are possible: a short-term recoil of a drop from an obstacle, a drop flowing around a cylindrical obstacle while maintaining the continuity of the drop, the breakup of a drop into two secondary drops, one of which can continue flight and the other one is captured by the cylinder, or both secondary droplets continue to fly, and the drop can be also captured by the cylinder, until the impact of the next drop(s) forces the accumulated drop to detach from the cylinder. Numerical modeling satisfactorily reproduces the phenomena observed in the experiment.


Author(s):  
T. I. Khabakhpasheva ◽  
A. A. Korobkin

The two-dimensional motion of a rigid body with a smooth surface is studied during its oblique impact on a liquid layer. The problem is coupled: the three degrees of freedom of the moving body are determined together with the liquid flow and the hydrodynamic pressure along the wetted part of the body surface. The impact process is divided into two temporal stages. During the first stage, the wetted region expands at a high speed with jetting flows at both ends of the wetted region. In the second stage, the free surface of the liquid is allowed to separate from the body surface. The position of the separation point is determined with the help of the Brillouin–Villat condition. Calculations are performed for elliptic cylinders of different masses and with different orientations and speeds before the impact. The horizontal and vertical displacements of the body, as well as its angle of rotation and corresponding speeds are investigated. The model developed remains valid until the body either touches the bottom of the liquid or rebounds from the liquid.


1977 ◽  
Vol 19 (81) ◽  
pp. 175-183 ◽  
Author(s):  
Gorow Wakahama ◽  
Atsushi Sato

AbstractWhen snow is pushed very fast by a moving body a plastic wave is generated at the head of the body. If the velocity of the moving body becomes close to that of the plastic wave, the snow may exert a great resistive force against the body as predicted by Yosida. It is, therefore, very important to study the dynamic behaviour of snow at a high rate of deformation, such as takes place when a snow plough is used on the highway, a train runs on a railroad covered with snow, or an avalanche occurs. Hence, this study is concerned with the safety and maintenance of winter traffic and transportation, and also with the generation and propagation of an avalanche. In order to clarify the detailed processes of the deformation of snow at high rates, laboratory experiments were made by compressing snow at high speed. The propagation of a plastic wave through snow was observed by using a high-speed camera and a pressure-detecting device. Analyses of the data obtained gave the velocity of the plastic wave for various kinds of snow whose density ranged from 0.17 to 0.46 Mg m-3and free-water content from o to 17%, whereby studies were made into the dependences on the density and free-water content of the velocity of the plastic wave. When the impact velocity was 4.3 ± 0.2 m s-1, the wave velocity ranged from 5 m s-1for a new snow to 12 m s-1for a fine-grained, well-settled snow. The plastic-wave velocity in wet snow was, in general, smaller than that in dry snow of the same density. Changes in density and structure of snow associated with the passage of a plastic wave were studied and discussed. The pressure at the wave front was measured; values of 0.1-0.3 bar were obtained, these are of the same order as the value estimated from theoretical formulae. The plastic-wave velocity was also observed for a confined snow, which showed a larger velocity and plastic strain than an unconfined snow.


1977 ◽  
Vol 19 (81) ◽  
pp. 175-183 ◽  
Author(s):  
Gorow Wakahama ◽  
Atsushi Sato

AbstractWhen snow is pushed very fast by a moving body a plastic wave is generated at the head of the body. If the velocity of the moving body becomes close to that of the plastic wave, the snow may exert a great resistive force against the body as predicted by Yosida. It is, therefore, very important to study the dynamic behaviour of snow at a high rate of deformation, such as takes place when a snow plough is used on the highway, a train runs on a railroad covered with snow, or an avalanche occurs. Hence, this study is concerned with the safety and maintenance of winter traffic and transportation, and also with the generation and propagation of an avalanche. In order to clarify the detailed processes of the deformation of snow at high rates, laboratory experiments were made by compressing snow at high speed. The propagation of a plastic wave through snow was observed by using a high-speed camera and a pressure-detecting device. Analyses of the data obtained gave the velocity of the plastic wave for various kinds of snow whose density ranged from 0.17 to 0.46 Mg m-3 and free-water content from o to 17%, whereby studies were made into the dependences on the density and free-water content of the velocity of the plastic wave. When the impact velocity was 4.3 ± 0.2 m s-1, the wave velocity ranged from 5 m s-1 for a new snow to 12 m s-1 for a fine-grained, well-settled snow. The plastic-wave velocity in wet snow was, in general, smaller than that in dry snow of the same density. Changes in density and structure of snow associated with the passage of a plastic wave were studied and discussed. The pressure at the wave front was measured; values of 0.1-0.3 bar were obtained, these are of the same order as the value estimated from theoretical formulae. The plastic-wave velocity was also observed for a confined snow, which showed a larger velocity and plastic strain than an unconfined snow.


Basic studies show that the measured impact pressure can be accounted for by assuming compressible deformation of the liquid drop in the first stages of impact. The distribution of pressure under a drop produces a shallow indentation in the surface of ductile solids and a ring fracture in brittle materials. The flow of liquid across the surface from under the drop leads to erosive shearing along the edges of the deformed area. Although in theory erosion due to surface flow would not occur on perfectly smooth surfaces, ideal conditions of this kind are impracticable. The smallest discontinuities (step heights down to about 1000 A) have been shown to act as nuclei for erosion pits. The short duration of the peak load during drop impact gives the impact an explosive character. In brittle materials the reflexion and interference of stress waves can cause extensive fracture in regions remote from the initial impact area. Spalling of the rear surface of a thin plate due to drop impact on the front surface could be an important mechanism in the failure of ceramic radomes in high speed aircraft and missiles. To some extent the strength of brittle solids can be improved by treatments which alter the size or number of surface flaws.


2019 ◽  
Vol 6 (5) ◽  
pp. 190060 ◽  
Author(s):  
Amber J. Collings ◽  
Laura B. Porro ◽  
Cameron Hill ◽  
Christopher T. Richards

Some frog species, such as Kassina maculata (red-legged running frog), use an asynchronous walking/running gait as their primary locomotor mode. Prior comparative anatomy work has suggested that lateral rotation of the pelvis improves walking performance by increasing hindlimb stride length; however, this hypothesis has never been tested. Using non-invasive methods, experimental high-speed video data collected from eight animals were used to create two three-dimensional kinematic models. These models, each fixed to alternative local anatomical reference frames, were used to investigate the hypothesis that lateral rotation of the mobile ilio-sacral joint in the anuran pelvis plays a propulsive role in walking locomotion by increasing hindlimb stride length. All frogs used a walking gait (duty factor greater than 0.5) despite travelling over a range of speeds (0.04–0.23 m s −1 ). The hindlimb joint motions throughout a single stride were temporally synchronized with lateral rotation of the pelvis. The pelvis itself, on average, underwent an angular excursion of 12.71° (±4.39°) with respect to the body midline during lateral rotation. However, comparison between our two kinematic models demonstrated that lateral rotation of the pelvis only increases the cranio-caudal excursion of the hindlimb modestly. Thus, we propose that pelvic lateral rotation is not a stride length augmenting mechanism in K. maculata .


2021 ◽  
Vol 100 (4) ◽  
pp. 318-326
Author(s):  
Evgeniy Yu. Bersenev ◽  
Vladimir I. Dubinin ◽  
Vyacheslav M. Ermakov ◽  
Anna I. Kirpicheva

Introduction. To create a regulatory framework, including harmonized with European normative documents in terms of assessing passengers’ comfort, the standard of the enterprise STO RZD “Services in railway transport was developed. Rules for assessing the level of comfort of passengers on trains.” The objective of the study is to compare the indices of the comfort level of passengers, determined by the values of the accelerations acting on them, with the psychological sensations and physiological changes in the body arising in this case, depending on the rolling stock and the state of the track. Material and methods. The experiment using ECG monitoring devices was carried out in four groups of eleven people, six men and five women aged 30-55 years. Additionally, in each group, a psychological survey of 11 more passengers was carried out. All of them were staff members of the Russian Railways divisions. Results. When traveling on high-speed trains “Lastochka” and “Sapsan,” the respondents more often note drowsiness and an exhausted state’s progression. At the end of the trip, they often emphasize stiffness, discomfort, numbness, and numbness of the leg muscles, probably associated with an extended stay in a forced position in the absence of specific freedom movements. In the “lying” position, a person experiences less fatigue, which, according to the sensations, hardly differs from the conditions of a trip in a “sitting” position during short journeys. Regulatory changes in the cardiovascular system are manifested with the combined influence of uncanceled accelerations (the impact of centrifugal forces) and movement speed changes. Conclusion. Carrying out a questionnaire survey and physiological measurements of the dynamics of heart rate fluctuations on the investigated sections of the routes in combination with the obtained technical data on the nature of mobile rail vehicles’ movement confirm the absence of critical discomfort for passengers when traveling on passenger and high-speed trains. The calculated values of the average and constant comfort levels are consistent and do not require correction of the corresponding scales’ values.


When rocks are cut in coal mines by steel picks, frictional heating sometimes causes ignition of methane; high speed water jets may provide a method of cutting which is free from this hazard. A high speed water jet emerging from a nozzle slows down with increasing distance from the nozzle and breaks up into water drops. Studies were made of the behaviour of water jets: in most of the experiments the jets were produced by pressures of 600 atm., but some results are given of experiments at pressures up to 5000 atm. The jets were examined by short exposure optical photography with several different methods of illumination (parallel transmitted, diffuse, and schlieren) and by X-ray photography. In order to find out how the jet velocity decays with distance from a nozzle, and to compare nozzle designs, a target plate containing a hole smaller than the jet diameter was placed so that the jet impinged at right angles on to it, and the target plate was moved until the maximum pressure at the hole was found: this was measured for different distances from the nozzle. Nozzle shapes suggested in literature for minimizing jet dispersion were studied and an empirical investigation of a variety of nozzle shapes was carried out. Several nozzle shapes were found which gave good results, i.e. the maximum pressure on the target plate was half the pump pressure at a distance of about 350 nozzle diameters. In many cutting applications the first stage in the process would be the impingement of a water jet on a surface at right angles. The initial cutting would depend upon the stress distribution within the target, which in turn would depend upon the pressure distribution produced by the water jet on the surface. A theory is given of the pressure distribution on the target plate, which predicts that the pressure will fall to zero at about 2.6 jet radii: this was found to be in good agreement with experiments. Preliminary studies were made of the penetration of several types of rock by water jets of velocities up to about 1000 m/s (pressures about 5000 atm). It was found that a 1 mm diameter jet drills a cylindrical hole about 5 mm in diameter. The pressure that the water jet produces at the bottom of such holes was measured and shown to fall off to about one-tenth of the nozzle pressure at a hole depth of about 4 cm.


Sign in / Sign up

Export Citation Format

Share Document