Some thoughts on Sun—weather relations

Recent measurements of variations in the total solar irradiance now offer a quantitative mechanism through which year-to-year changes in solar activity may influence surface temperature. It follows that at least a part of the global warming of the last century could be ascribed to changes in solar output, and that effects of solar radiative forcing may need to be taken into account in predictions of greenhouse warming. A number of questions still remain, however, before this thesis rests on a firm foundation.

2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2013 ◽  
Vol 9 (4) ◽  
pp. 1879-1909 ◽  
Author(s):  
R. Roth ◽  
F. Joos

Abstract. Radiocarbon production, solar activity, total solar irradiance (TSI) and solar-induced climate change are reconstructed for the Holocene (10 to 0 kyr BP), and TSI is predicted for the next centuries. The IntCal09/SHCal04 radiocarbon and ice core CO2 records, reconstructions of the geomagnetic dipole, and instrumental data of solar activity are applied in the Bern3D-LPJ, a fully featured Earth system model of intermediate complexity including a 3-D dynamic ocean, ocean sediments, and a dynamic vegetation model, and in formulations linking radiocarbon production, the solar modulation potential, and TSI. Uncertainties are assessed using Monte Carlo simulations and bounding scenarios. Transient climate simulations span the past 21 thousand years, thereby considering the time lags and uncertainties associated with the last glacial termination. Our carbon-cycle-based modern estimate of radiocarbon production of 1.7 atoms cm−2 s−1 is lower than previously reported for the cosmogenic nuclide production model by Masarik and Beer (2009) and is more in-line with Kovaltsov et al. (2012). In contrast to earlier studies, periods of high solar activity were quite common not only in recent millennia, but throughout the Holocene. Notable deviations compared to earlier reconstructions are also found on decadal to centennial timescales. We show that earlier Holocene reconstructions, not accounting for the interhemispheric gradients in radiocarbon, are biased low. Solar activity is during 28% of the time higher than the modern average (650 MeV), but the absolute values remain weakly constrained due to uncertainties in the normalisation of the solar modulation to instrumental data. A recently published solar activity–TSI relationship yields small changes in Holocene TSI of the order of 1 W m−2 with a Maunder Minimum irradiance reduction of 0.85 ± 0.16 W m−2. Related solar-induced variations in global mean surface air temperature are simulated to be within 0.1 K. Autoregressive modelling suggests a declining trend of solar activity in the 21st century towards average Holocene conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-30 ◽  
Author(s):  
Hermann Harde

We present detailed line-by-line radiation transfer calculations, which were performed under different atmospheric conditions for the most important greenhouse gases water vapor, carbon dioxide, methane, and ozone. Particularly cloud effects, surface temperature variations, and humidity changes as well as molecular lineshape effects are investigated to examine their specific influence on some basic climatologic parameters like the radiative forcing, the long wave absorptivity, and back-radiation as a function of an increasing CO2 concentration in the atmosphere. These calculations are used to assess the CO2 global warming by means of an advanced two-layer climate model and to disclose some larger discrepancies in calculating the climate sensitivity. Including solar and cloud effects as well as all relevant feedback processes our simulations give an equilibrium climate sensitivity of CS = 0.7°C (temperature increase at doubled CO2) and a solar sensitivity of SS = 0.17°C (at 0.1% increase of the total solar irradiance). Then CO2 contributes 40% and the Sun 60% to global warming over the last century.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
E. E. Benevolenskaya ◽  
I. G. Kostuchenko

We have analyzed the total solar irradiance (TSI) and the spectral solar irradiance as ultraviolet emission (UV) in the wavelength range 115–180 nm, observed with the instruments TIM and SOLSTICE within the framework of SORCE (the solar radiation and climate experiment) during the long solar minimum between the 23rd and 24th cycles. The wavelet analysis reveals an increase in the magnetic flux in the latitudinal zone of the sunspot activity, accompanied with an increase in the TSI and UV on the surface rotation timescales of solar activity complexes. In-phase coherent structures between the midlatitude magnetic flux and TSI/UV appear when the long-lived complexes of the solar activity are present. These complexes, which are related to long-lived sources of magnetic fields under the photosphere, are maintained by magnetic fluxes reappearing in the same longitudinal regions. During the deep solar minimum (the period of the absence of sunspots), a coherent structure has been found, in which the phase between the integrated midlatitude magnetic flux is ahead of the total solar irradiance on the timescales of the surface rotation.


2009 ◽  
Vol 22 (18) ◽  
pp. 4939-4952 ◽  
Author(s):  
Dietmar Dommenget

Abstract A characteristic feature of global warming is the land–sea contrast, with stronger warming over land than over oceans. Recent studies find that this land–sea contrast also exists in equilibrium global change scenarios, and it is caused by differences in the availability of surface moisture over land and oceans. In this study it is illustrated that this land–sea contrast exists also on interannual time scales and that the ocean–land interaction is strongly asymmetric. The land surface temperature is more sensitive to the oceans than the oceans are to the land surface temperature, which is related to the processes causing the land–sea contrast in global warming scenarios. It suggests that the ocean’s natural variability and change is leading to variability and change with enhanced magnitudes over the continents, causing much of the longer-time-scale (decadal) global-scale continental climate variability. Model simulations illustrate that continental warming due to anthropogenic forcing (e.g., the warming at the end of the last century or future climate change scenarios) is mostly (80%–90%) indirectly forced by the contemporaneous ocean warming, not directly by local radiative forcing.


2011 ◽  
Vol 8 (2) ◽  
pp. 2957-3007 ◽  
Author(s):  
T. L. Frölicher ◽  
F. Joos ◽  
C. C. Raible

Abstract. Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric sulfur release. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initially weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields an additional radiative forcing that amplifies the cooling and perturbs the Earth System on much longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different amounts of sulfur released and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the perturbation. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.


2014 ◽  
Vol 27 (1) ◽  
pp. 285-299 ◽  
Author(s):  
Shang-Min Long ◽  
Shang-Ping Xie ◽  
Xiao-Tong Zheng ◽  
Qinyu Liu

Abstract The time-dependent response of sea surface temperature (SST) to global warming and the associated atmospheric changes are investigated based on a 1% yr−1 CO2 increase to the quadrupling experiment of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1. The SST response consists of a fast component, for which the ocean mixed layer is in quasi equilibrium with the radiative forcing, and a slow component owing to the gradual warming of the deeper ocean in and beneath the thermocline. A diagnostic method is proposed to isolate spatial patterns of the fast and slow responses. The deep ocean warming retards the surface warming in the fast response but turns into a forcing for the slow response. As a result, the fast and slow responses are nearly opposite to each other in spatial pattern, especially over the subpolar North Atlantic/Southern Ocean regions of the deep-water/bottom-water formation, and in the interhemispheric SST gradient between the southern and northern subtropics. Wind–evaporation–SST feedback is an additional mechanism for the SST pattern formation in the tropics. Analyses of phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel ensemble of global warming simulations confirm the validity of the diagnostic method that separates the fast and slow responses. Tropical annual rainfall change follows the SST warming pattern in both the fast and slow responses in CMIP5, increasing where the SST increase exceeds the tropical mean warming.


Sign in / Sign up

Export Citation Format

Share Document