scholarly journals Meffil: efficient normalisation and analysis of very large DNA methylation samples

2017 ◽  
Author(s):  
Josine Min ◽  
Gibran Hemani ◽  
George Davey Smith ◽  
Caroline Relton ◽  
Matthew Suderman

AbstractBackgroundTechnological advances in high throughput DNA methylation microarrays have allowed dramatic growth of a new branch of epigenetic epidemiology. DNA methylation datasets are growing ever larger in terms of the number of samples profiled, the extent of genome coverage, and the number of studies being meta-analysed. Novel computational solutions are required to efficiently handle these data.MethodsWe have developed meffil, an R package designed to quality control, normalize and perform epigenome-wide association studies (EWAS) efficiently on large samples of Illumina Infinium HumanMethylation450 and MethylationEPIC BeadChip microarrays. We tested meffil by applying it to 6000 450k microarrays generated from blood collected for two different datasets, Accessible Resource for Integrative Epigenomic Studies (ARIES) and The Genetics of Overweight Young Adults (GOYA) study.ResultsA complete reimplementation of functional normalization minimizes computational memory requirements to 5% of that required by other R packages, without increasing running time. Incorporating fixed and random effects alongside functional normalization, and automated estimation of functional normalisation parameters reduces technical variation in DNA methylation levels, thus reducing false positive associations and improving power. We also demonstrate that the ability to normalize datasets distributed across physically different locations without sharing any biologically-based individual-level data may reduce heterogeneity in meta-analyses of epigenome-wide association studies. However, we show that when batch is perfectly confounded with cases and controls functional normalization is unable to prevent spurious associations.Conclusionsmeffil is available online (https://github.com/perishky/meffil/) along with tutorials covering typical use cases.

2018 ◽  
Vol 49 (13) ◽  
pp. 2197-2205 ◽  
Author(s):  
Hannah M. Sallis ◽  
George Davey Smith ◽  
Marcus R. Munafò

AbstractBackgroundDespite the well-documented association between smoking and personality traits such as neuroticism and extraversion, little is known about the potential causal nature of these findings. If it were possible to unpick the association between personality and smoking, it may be possible to develop tailored smoking interventions that could lead to both improved uptake and efficacy.MethodsRecent genome-wide association studies (GWAS) have identified variants robustly associated with both smoking phenotypes and personality traits. Here we use publicly available GWAS summary statistics in addition to individual-level data from UK Biobank to investigate the link between smoking and personality. We first estimate genetic overlap between traits using LD score regression and then use bidirectional Mendelian randomisation methods to unpick the nature of this relationship.ResultsWe found clear evidence of a modest genetic correlation between smoking behaviours and both neuroticism and extraversion. We found some evidence that personality traits are causally linked to certain smoking phenotypes: among current smokers each additional neuroticism risk allele was associated with smoking an additional 0.07 cigarettes per day (95% CI 0.02–0.12, p = 0.009), and each additional extraversion effect allele was associated with an elevated odds of smoking initiation (OR 1.015, 95% CI 1.01–1.02, p = 9.6 × 10−7).ConclusionWe found some evidence for specific causal pathways from personality to smoking phenotypes, and weaker evidence of an association from smoking initiation to personality. These findings could be used to inform future smoking interventions or to tailor existing schemes.


Author(s):  
Leigh Gardner

The use of numerical data and statistical sources in African history has expanded in recent decades, facilitated by technological advances and the digitization of primary sources. This expansion has included new analysis of traditional measures (population, government, and trade) as well as new sources of individual-level data such as census returns, marriage registers, and military and police records. Overall, this work has allowed for a more comprehensive quantitative picture of Africa’s history, and in particular facilitated comparisons within Africa and between African countries and other parts of the world. However, there remain misunderstandings about the collection, use, and interpretation of these data. Increasingly sophisticated methods of quantitative analysis can alienate scholars who have an intimate knowledge of the data and how they are produced, but lack specialist methodological training. At the same time, limited understanding of the origins and reliability of quantitative data can lead to misinterpretation.


Author(s):  
Tianye Jia ◽  
Congying Chu ◽  
Yun Liu ◽  
Jenny van Dongen ◽  
Evangelos Papastergios ◽  
...  

AbstractDNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)—three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.


2018 ◽  
Author(s):  
Yue Wu ◽  
Eleazar Eskin ◽  
Sriram Sankararaman

AbstractImputation has been widely utilized to aid and interpret the results of Genome-Wide Association Studies(GWAS). Imputation can increase the power to identify associations when the causal variant was not directly observed or typed in the GWAS. There are two broad classes of methods for imputation. The first class imputes the genotypes at the untyped variants given the genotypes at the typed variants and then performs a statistical test of association at the imputed variants. The second class of methods, summary statistic imputation, directly imputes the association statics at the untyped variants given the association statistics observed at the typed variants. This second class of methods is appealing as it tends to be computationally efficient while only requiring the summary statistics from a study while the former class requires access to individual-level data that can be difficult to obtain. The statistical properties of these two classes of imputation methods have not been fully understood. In this paper, we show that the two classes of imputation methods are equivalent, i.e., have identical asymptotic multivariate normal distributions with zero mean and minor variations in the covariance matrix, under some reasonable assumptions. Using this equivalence, we can understand the effect of imputation methods on power. We show that a commonly employed modification of summary statistic imputation that we term summary statistic imputation with variance re-weighting generally leads to a loss in power. On the other hand, our proposed method, summary statistic imputation without performing variance re-weighting, fully accounts for imputation uncertainty while achieving better power.


2021 ◽  
Author(s):  
Yiliang Zhang ◽  
Youshu Cheng ◽  
Yixuan Ye ◽  
Wei Jiang ◽  
Qiongshi Lu ◽  
...  

AbstractWith the increasing accessibility of individual-level data from genome wide association studies, it is now common for researchers to have individual-level data of some traits in one specific population. For some traits, we can only access public released summary-level data due to privacy and safety concerns. The current methods to estimate genetic correlation can only be applied when the input data type of the two traits of interest is either both individual-level or both summary-level. When researchers have access to individual-level data for one trait and summary-level data for the other, they have to transform the individual-level data to summary-level data first and then apply summary data-based methods to estimate the genetic correlation. This procedure is computationally and statistically inefficient and introduces information loss. We introduce GENJI (Genetic correlation EstimatioN Jointly using Individual-level and summary data), a method that can estimate within-population or transethnic genetic correlation based on individual-level data for one trait and summary-level data for another trait. Through extensive simulations and analyses of real data on within-population and transethnic genetic correlation estimation, we show that GENJI produces more reliable and efficient estimation than summary data-based methods. Besides, when individual-level data are available for both traits, GENJI can achieve comparable performance than individual-level data-based methods. Downstream applications of genetic correlation can benefit from more accurate estimates. In particular, we show that more accurate genetic correlation estimation facilitates the predictability of cross-population polygenic risk scores.


Author(s):  
Nick Strayer ◽  
Jana K Shirey-Rice ◽  
Yu Shyr ◽  
Joshua C Denny ◽  
Jill M Pulley ◽  
...  

Abstract Summary Electronic health records (EHRs) linked with a DNA biobank provide unprecedented opportunities for biomedical research in precision medicine. The Phenome-wide association study (PheWAS) is a widely used technique for the evaluation of relationships between genetic variants and a large collection of clinical phenotypes recorded in EHRs. PheWAS analyses are typically presented as static tables and charts of summary statistics obtained from statistical tests of association between a genetic variant and individual phenotypes. Comorbidities are common and typically lead to complex, multivariate gene–disease association signals that are challenging to interpret. Discovering and interrogating multimorbidity patterns and their influence in PheWAS is difficult and time-consuming. We present PheWAS-ME: an interactive dashboard to visualize individual-level genotype and phenotype data side-by-side with PheWAS analysis results, allowing researchers to explore multimorbidity patterns and their associations with a genetic variant of interest. We expect this application to enrich PheWAS analyses by illuminating clinical multimorbidity patterns present in the data. Availability and implementation A demo PheWAS-ME application is publicly available at https://prod.tbilab.org/phewas_me/. Sample datasets are provided for exploration with the option to upload custom PheWAS results and corresponding individual-level data. Online versions of the appendices are available at https://prod.tbilab.org/phewas_me_info/. The source code is available as an R package on GitHub (https://github.com/tbilab/multimorbidity_explorer). Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Luke R. Lloyd-Jones ◽  
Jian Zeng ◽  
Julia Sidorenko ◽  
Loïc Yengo ◽  
Gerhard Moser ◽  
...  

Abstract Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using 12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR improves prediction accuracy relative to commonly used state-of-the-art summary statistics methods at a fraction of the computational resources. Furthermore, using summary statistics for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we show that on average across traits and two independent data sets that SBayesR improves prediction R2 by 5.2% relative to LDpred and by 26.5% relative to clumping and p value thresholding.


2021 ◽  
Author(s):  
IS Arriaga-MacKenzie ◽  
G Matesi ◽  
S Chen ◽  
A Ronco ◽  
KM Marker ◽  
...  

AbstractPublicly available genetic summary data have high utility in research and the clinic including prioritizing putative causal variants, polygenic scoring, and leveraging common controls. However, summarizing individual-level data can mask population structure resulting in confounding, reduced power, and incorrect prioritization of putative causal variants. This limits the utility of publicly available data, especially for understudied or admixed populations where additional research and resources are most needed. While several methods exist to estimate ancestry in individual-level data, methods to estimate ancestry proportions in summary data are lacking. Here, we present Summix, a method to efficiently deconvolute ancestry and provide ancestry-adjusted allele frequencies from summary data. Using continental reference ancestry, African (AFR), Non-Finnish European (EUR), East Asian (EAS), Indigenous American (IAM), South Asian (SAS), we obtain accurate and precise estimates (within 0.1%) for all simulation scenarios. We apply Summix to gnomAD v2.1 exome and genome groups and subgroups finding heterogeneous continental ancestry for several groups including African/African American (∼84% AFR, ∼14% EUR) and American/Latinx (∼4% AFR, ∼5% EAS, ∼43% EUR, ∼46% IAM). Compared to the unadjusted gnomAD AFs, Summix’s ancestry-adjusted AFs more closely match respective African and Latinx reference samples. Even on modern, dense panels of summary statistics, Summix yields results in seconds allowing for estimation of confidence intervals via block bootstrap. Given an accompanying R package, Summix increases the utility and equity of public genetic resources, empowering novel research opportunities.


2020 ◽  
Author(s):  
Ciarrah Barry ◽  
Junxi Liu ◽  
Rebecca Richmond ◽  
Martin K Rutter ◽  
Deborah A Lawlor ◽  
...  

AbstractOver the last decade the availability of SNP-trait associations from genome-wide association studies data has led to an array of methods for performing Mendelian randomization studies using only summary statistics. A common feature of these methods, besides their intuitive simplicity, is the ability to combine data from several sources, incorporate multiple variants and account for biases due to weak instruments and pleiotropy. With the advent of large and accessible fully-genotyped cohorts such as UK Biobank, there is now increasing interest in understanding how best to apply these well developed summary data methods to individual level data, and to explore the use of more sophisticated causal methods allowing for non-linearity and effect modification.In this paper we describe a general procedure for optimally applying any two sample summary data method using one sample data. Our procedure first performs a meta-analysis of summary data estimates that are intentionally contaminated by collider bias between the genetic instruments and unmeasured confounders, due to conditioning on the observed exposure. A weighted sum of these estimates is then used to correct the standard observational association between an exposure and outcome. Simulations are conducted to demonstrate the method’s performance against naive applications of two sample summary data MR. We apply the approach to the UK Biobank cohort to investigate the causal role of sleep disturbance on HbA1c levels, an important determinant of diabetes.Our approach is closely related to the work of Dudbridge et al. (Nat. Comm. 10: 1561), who developed a technique to adjust for index event bias when uncovering genetic predictors of disease progression based on case-only data. Our paper serves to clarify that in any one sample MR analysis, it can be advantageous to estimate causal relationships by artificially inducing and then correcting for collider bias.


2019 ◽  
Author(s):  
Victor Yuan ◽  
E Magda Price ◽  
Giulia F Del Gobbo ◽  
Sara Mostafavi ◽  
Brian Cox ◽  
...  

ABSTRACTBackgroundThe influence of genetics on variation in DNA methylation (DNAme) is well documented. Yet confounding from population stratification is often unaccounted for in DNAme association studies. Existing approaches to address confounding by population stratification using DNAme data may not generalize to populations or tissues outside those in which they were developed. To aid future placental DNAme studies in assessing population stratification, we developed an ethnicity classifier, PlaNET (Placental DNAme Elastic Net Ethnicity Tool), using five cohorts with Infinium Human Methylation 450k BeadChip array (HM450k) data from placental samples that is also compatible with the newer EPIC platform.ResultsData from 509 placental samples was used to develop PlaNET and show that it accurately predicts (accuracy = 0.938, kappa = 0.823) major classes of self-reported ethnicity/race (African: n = 58, Asian: n = 53, Caucasian: n = 389), and produces ethnicity probabilities that are highly correlated with genetic ancestry inferred from genome-wide SNP arrays (>2.5 million SNP) and ancestry informative markers (n = 50 SNPs). PlaNET’s ethnicity classification relies on 1860 HM450K microarray sites, and over half of these were linked to nearby genetic polymorphisms (n = 955). Our placental-optimized method outperforms existing approaches in assessing population stratification in placental samples from individuals of Asian, African, and Caucasian ethnicities.ConclusionPlaNET provides an improved approach to address population stratification in placental DNAme association studies. The method can be applied to predict ethnicity as a discrete or continuous variable and will be especially useful when self-reported ethnicity information is missing and genotyping markers are unavailable. PlaNET is available as an R package at (https://github.com/wvictor14/planet).


Sign in / Sign up

Export Citation Format

Share Document