scholarly journals High-dimensional mass cytometry analysis of NK cell alterations in Acute Myeloid Leukemia identifies a subgroup with adverse clinical outcome

Author(s):  
Anne-Sophie Chretien ◽  
Raynier Devillier ◽  
Samuel Granjeaud ◽  
Charlotte Cordier ◽  
Clemence Demerle ◽  
...  

ABSTRACTNatural killer (NK) cells are major anti-leukemic immune effectors. Leukemic blasts have a negative impact on NK cell function and promote the emergence of phenotypically and functionally impaired NK cells. In the present work, we highlight an accumulation of CD56-CD16+ unconventional NK cells in acute myeloid leukemia (AML), an aberrant subset initially described as being elevated in patients chronically infected with HIV-1. Deep phenotyping of NK cells was performed using peripheral blood from patients with newly-diagnosed AML (N=48, HEMATOBIO cohort, NCT02320656) and healthy subjects (N=18) by mass cytometry. We evidenced a moderate to drastic accumulation of CD56- CD16+ unconventional NK cells in 27% of patients. These NK cells displayed decreased expression of NKG2A as well as the triggering receptors NKp30, and NKp46, in line with previous observations in HIV-infected patients. High-dimensional characterization of these NK cells highlighted a decreased expression of three additional major triggering receptors required for NK cell activation, NKG2D, DNAM-1, and CD96. A high proportion of CD56-CD16+ NK cells at diagnosis was associated with an adverse clinical outcome, with decreased overall survival (HR=0.13; P=.0002) and event-free survival (HR=0.33; P=.018), and retained statistical significance in multivariate analysis. Pseudo-time analysis of the NK cell compartment highlighted a disruption of the maturation process, with a bifurcation from conventional NK cells toward CD56-CD16+ NK cells. Overall, our data suggest that the accumulation of CD56-CD16+ NK cells may be the consequence of immune escape from innate immunity during AML progression.SignificanceThis work provides the first report of accumulation of unconventional CD56-CD16+ NK cells in non-virally induced malignancies. Pseudotime analysis highlights a bifurcation point occurring during the course of NK cell maturation, providing elements regarding the possible origin of CD56-CD16+ NK cells. Increased frequency of CD56-CD16+ NK cells is associated with adverse clinical outcome in AML and might contribute, as well as other maturation defects, to a defective control of AML progression. Overall, accumulation of CD56-CD16+ NK cells could be an important feature of immune escape from innate immunity.Graphical abstractKey pointsA disruption in the maturation process of NK cells leads to accumulation of unconventional CD56- CD16+ NK cells in patients with AMLHigh frequency of CD56-CD16+ NK cells is associated with adverse clinical outcome

2021 ◽  
Vol 118 (22) ◽  
pp. e2020459118
Author(s):  
Anne-Sophie Chretien ◽  
Raynier Devillier ◽  
Samuel Granjeaud ◽  
Charlotte Cordier ◽  
Clemence Demerle ◽  
...  

Natural killer (NK) cells are major antileukemic immune effectors. Leukemic blasts have a negative impact on NK cell function and promote the emergence of phenotypically and functionally impaired NK cells. In the current work, we highlight an accumulation of CD56−CD16+ unconventional NK cells in acute myeloid leukemia (AML), an aberrant subset initially described as being elevated in patients chronically infected with HIV-1. Deep phenotyping of NK cells was performed using peripheral blood from patients with newly diagnosed AML (n = 48, HEMATOBIO cohort, NCT02320656) and healthy subjects (n = 18) by mass cytometry. We showed evidence of a moderate to drastic accumulation of CD56−CD16+ unconventional NK cells in 27% of patients. These NK cells displayed decreased expression of NKG2A as well as the triggering receptors NKp30 and NKp46, in line with previous observations in HIV-infected patients. High-dimensional characterization of these NK cells highlighted a decreased expression of three additional major triggering receptors required for NK cell activation, NKG2D, DNAM-1, and CD96. A high proportion of CD56−CD16+ NK cells at diagnosis was associated with an adverse clinical outcome and decreased overall survival (HR = 0.13; P = 0.0002) and event-free survival (HR = 0.33; P = 0.018) and retained statistical significance in multivariate analysis. Pseudotime analysis of the NK cell compartment highlighted a disruption of the maturation process, with a bifurcation from conventional NK cells toward CD56−CD16+ NK cells. Overall, our data suggest that the accumulation of CD56−CD16+ NK cells may be the consequence of immune escape from innate immunity during AML progression.


2020 ◽  
Vol 134 (2) ◽  
pp. 261-271 ◽  
Author(s):  
Zhiding Wang ◽  
Yang Xiao ◽  
Wei Guan ◽  
Mengzhen Wang ◽  
Jinghong Chen ◽  
...  

Abstract Acute myeloid leukemia (AML) is a malignant disorder of hemopoietic stem cells. AML can escape immunosurveillance of natural killer (NK) by gene mutation, fusions and epigenetic modification. The mechanism of AML immune evasion is not clearly understood. Here we show that CD48 high expression is a favorable prognosis factor that is down-regulated in AML patients, which can help AML evade from NK cell recognition and killing. Furthermore, we demonstrate that CD48 expression is regulated by methylation and that a hypomethylating agent can increase the CD48 expression, which increases the NK cells killing in vitro. Finally, we show that CD48 high expression can reverse the AML immune evasion and activate NK cells function in vivo. The present study suggests that a combination the hypomethylating agent and NK cell infusion could be a new strategy to cure AML.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Xiao ◽  
Jinghong Chen ◽  
Jia Wang ◽  
Wei Guan ◽  
Mengzhen Wang ◽  
...  

Acute myeloid leukemia (AML), a malignant disorder of hemopoietic stem cells. AML can escape immunosurveillance of natural killer (NK) by gene mutation, fusions, and epigenetic modification, while the mechanism is not clearly understood. Here we show that the expression of Intercellular adhesion molecule‐1 (ICAM‐1, CD54) is silenced in AML cells. Decitabine could upregulate ICAM-1 expression, which contributes to the NK-AML cell conjugates and helps NK cells kill AML cells. We also show that ICAM-1 high expression can reverse the AML immune evasion and activate NK cells function in vivo. This study suggests that a combination of the hypomethylating agent and NK cell infusion could be a new strategy to cure AML.


Haematologica ◽  
2020 ◽  
pp. 0-0
Author(s):  
Jessica Li ◽  
Sarah Whelan ◽  
Maya F. Kotturi ◽  
Deborah Meyran ◽  
Criselle D’Souza ◽  
...  

This study explored the novel immune checkpoint poliovirus receptor-related immunoglobulin domain-containing (PVRIG) in acute myeloid leukemia (AML). We showed that AML patient blasts consistently expressed the PVRIG ligand (poliovirus receptor-related 2, PVRL2). Furthermore, PVRIG blockade significantly enhanced NK cell killing of PVRL2+, poliovirus receptor (PVR)lo AML cell lines, and significantly increased NK cell activation and degranulation in the context of patient primary AML blasts. However, in AML patient bone marrow, NK cell PVRIG expression levels were not increased. To understand how PVRIG blockade might potentially be exploited therapeutically, we investigated the biology of PVRIG and revealed that NK cell activation resulted in reduced PVRIG expression on the cell surface. This occurred whether NK cells were activated by tumour cell recognition, cytokines (IL-2 and IL-12) or activating receptor stimulation (CD16 and NKp46). PVRIG was present at higher levels in the cytoplasm than on the cell surface, particularly on CD56bright NK cells, which further increased cytoplasmic PVRIG levels following IL-2 and IL-12 activation. PVRIG was continually transported to the cell surface via the endoplasmic reticulum (ER) and Golgi in both unstimulated and activated NK cells. Taken together, our findings suggest that anti- PVRIG blocking antibody functions by binding to surface-bound PVRIG, which undergoes rapid turnover in both unstimulated and activated NK cells. We conclude that the PVRIGPVRL2 immune checkpoint axis can feasibly be targeted with PVRIG blocking antibody for NK-mediated immunotherapy of PVRL2+ AML.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A893-A893
Author(s):  
Laurent Gauthier ◽  
Angela Virone-Oddos ◽  
Angela Virone-Oddos ◽  
Jochen Beninga ◽  
Benjamin Rossi ◽  
...  

BackgroundThere is a clear need for targeted therapies to treat acute myeloid leukemia (AML), the most common acute leukemia in adults. CD123 (IL-3 receptor alpha chain) is an attractive target for AML treatment.1 However, cytotoxic antibody targeting CD123 proved insufficiently effective in a combination setting in phase II/III clinical trials.2 T-cell engagers targeting CD123 displayed some clinical efficacy but were often associated with cytokine release syndrome and neurotoxicity.3 Interest in the use of NK cells for therapeutic interventions has increased in recent years, as a potential safer alternative to T cells. Several NK-cell activating receptors, such as CD16a, NKG2D, and the natural cytotoxicity receptors NKp30 and NKp46, can be targeted to induce antitumor immunity. We previously reported the development of trifunctional NK-cell engagers (NKCEs) targeting a tumor antigen on cancer cells and co-engaging NKp46 and CD16a on NK cells.4MethodsWe report here the design, characterization and preclinical development of a novel trifunctional NK cell engager (NKCE) targeting CD123 on AML cells and engaging the activating receptors NKp46 and CD16a on NK cells. The CD123 NKCE therapeutic molecule was engineered with humanized antibodies targeting NKp464 and CD123.5 We compared CD123-NKCE and a cytotoxic ADCC-enhanced antibody (Ab) targeting CD123, in terms of antitumor activity in vitro, ex vivo and in vivo. Pharmacokinetic, pharmacodynamic and safety profile of CD123-NKCE were evaluated in non-human primate (NHP) studies.ResultsThe expression of the high affinity Fc gamma receptor CD64 on patient-derived AML cells inhibited the ADCC of the Ab targeting CD123 in vitro and ex vivo, but not the antitumor activity of CD123-NKCE. CD123-NKCE had potent antitumor activity against primary AML blasts and AML cell lines, promoted strong NK-cell activation and induced cytokine secretion only in the presence of AML target cells. Its antitumor activity in mouse model was greater than that of the comparator antibody. Moreover, CD123-NKCE had strong and prolonged pharmacodynamic effects in NHP when used at very low doses, was well-tolerated up to high 3 mg/kg dose and triggered only minor cytokine release.ConclusionsThe data for activity, safety, pharmacokinetics, and pharmacodynamics provided here demonstrate the superiority of CD123-NKCE over comparator cytotoxic antibody, in terms of antitumor activity in vitro, ex vivo, in vivo, and its favorable safety profile, as compared to T-cell therapies. These results constitute proof-of-principle for the efficacy of CD123-NKCE for controlling AML tumors in vivo, and provide consistent support for their clinical development.ReferencesEhninger A, Kramer M, Rollig C, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J 2014;4:e218.Montesinos P, Gail J Roboz GJ, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia 2021;35(1):62–74.Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021;137(6):751–762.Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019;177(7):1701–13.Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009;5:31–42.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2171
Author(s):  
Isabel Valhondo ◽  
Fakhri Hassouneh ◽  
Nelson Lopez-Sejas ◽  
Alejandra Pera ◽  
Beatriz Sanchez-Correa ◽  
...  

Background: Acute myeloid leukemia (AML) remains a major clinical challenge due to poor overall survival, which is even more dramatic in elderly patients. TIGIT, an inhibitory receptor that interacts with CD155 and CD112 molecules, is considered as a checkpoint in T and NK cell activation. This receptor shares ligands with the co-stimulatory receptor DNAM-1 and with TACTILE. The aim of this work was to analyze the expression of DNAM-1, TIGIT and TACTILE in NK cells and T cell subsets in AML patients. Methods: We have studied 36 patients at the time of diagnosis of AML and 20 healthy volunteers. The expression of DNAM-1, TIGIT and TACTILE in NK cells and T cells, according to the expression of CD3 and CD56, was performed by flow cytometry. Results: NK cells, CD56− T cells and CD56+ T (NKT-like) cells from AML patients presented a reduced expression of DNAM-1 compared with healthy volunteers. An increased expression of TIGIT was observed in mainstream CD56− T cells. No differences were observed in the expression of TACTILE. Simplified presentation of incredibly complex evaluations (SPICE) analysis of the co-expression of DNAM-1, TIGIT and TACTILE showed an increase in NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE. Low percentages of DNAM-1−TIGIT+TACTILE+ NK cells and DNAM-1− TIGIT+TACTILE+ CD56− T cells were associated with a better survival of AML patients. Conclusions: The expression of DNAM-1 is reduced in NK cells and in CD4+ and CD8+ T cells from AML patients compared with those from healthy volunteers. An increased percentage of NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE is associated with patient survival, supporting the role of TIGIT as a novel candidate for checkpoint blockade.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 84
Author(s):  
Carla Minoia ◽  
Vincenza de Fazio ◽  
Giovanni Scognamillo ◽  
Anna Scattone ◽  
Nicola Maggialetti ◽  
...  

Myeloid sarcoma (MS) represents a rare disease with an adverse clinical outcome for patients not candidate to acute myeloid leukemia (AML)-like chemotherapies. Here we present the case of an elderly patient affected by a bilateral breast localization of MS treated with the hypomethylating agent decitabine associated to radiotherapy. The association of the two treatment modalities has allowed an optimal and long-lasting disease control.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 18-18
Author(s):  
Matthias Krusch ◽  
Katrin M. Baltz ◽  
Tina Baessler ◽  
Lothar Kanz ◽  
Helmut R. Salih

Abstract NK cells play an important role in the reciprocal interaction of tumor cells with the immune system and participate in the surveillance and eradication of hematological malignancies. The activity of NK cells is governed by a balance of activating and inhibitory surface receptors. Glucocorticoid-induced TNF-related protein (GITR) and its ligand (GITRL) are members of the TNF/TNF receptor (TNFR) superfamily, which mediates multiple cellular functions including proliferation, differentiation, and cell death. Recently we reported that NK cells express GITR while cancer cells express GITRL and GITR-GITRL interaction down regulates NK cell-mediated anti-tumor immunity (Baltz et al., FASEB J 2007). Here we demonstrate that GITRL is expressed on 6 of 7 investigated acute myeloid leukemia (AML) cell lines and on primary AML cells in 30 of 52 (59%) patients, while no GITRL expression was detected on CD34+ cells of healthy donors (n=5). GITRL expression was not restricted to a specific French-American-British (FAB) subtype, but was significantly (p<0.05, one-way ANOVA) associated with monocytic (FAB M4, M5) differentiation. In addition, no association with a particular cytogenetic abnormality or with expression of MHC class I was observed. Reverse signaling via GITRL led to phosphorylation of ERK and JNK resulting in significantly (p<0.05, Mann-Whitney U-test) enhanced production of IL-10 and TNF by patient AML cells (n=10). In line, specific inhibitors for JNK and ERK1/2 blocked the cytokine release by AML cells demonstrating that activation of MAP kinases is responsible for the production of the immunoregulatory cytokines following GITRL stimulation. Importantly, blocking GITR-GITRL interaction in cocultures of AML and NK cells significantly (both <0.05 Mann-Whitney U-test) increased cellular cytotoxicity about 70% and IFN-γ production about 60%, and this was due to restored NK cell NF-κB activity. Thus, GITRL substantially influences immunoediting by AML cells and enables the escape of AML cells from NK cell-mediated immune surveillance. The correlation found between GITRL expression and NK cell susceptibility may provide useful information for NK cell-based immunotherapy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 880-880
Author(s):  
Tina Baessler ◽  
Matthias Krusch ◽  
Katrin M. Baltz ◽  
Benjamin J. Schmiedel ◽  
Helga M. Schmetzer ◽  
...  

Abstract NK cells play an important role in the reciprocal interaction of tumor cells with the immune system and participate in the surveillance and eradication of hematological malignancies including acute myeloid leukemia (AML). NK cell reactivity is governed by a balance of activating and inhibitory receptors including various members of the TNF receptor (TNFR) superfamily. The TNFR superfamily member CD137/4-1BB has been shown to stimulate proliferation and IFN-γ production, but not cytotoxicity of NK cells in mice. Surprisingly, yet nothing is known regarding the consequences of CD137-CD137 ligand (CD137L) interaction for NK cell reactivity in humans. In this study we demonstrate that CD56dimCD16+ but not CD56brightCD16− NK cells express CD137 upon stimulation with the activating cytokines IL-2 and IL-15 with peak expression between 48 and 60h. Furthermore, we found that 5 of 7 investigated AML cell lines and 16 of 51 (33%) primary AML cells of patients expressed substantial CD137L levels, while no CD137L expression was detected on CD34+ cells of healthy donors (n=5). CD137L expression was not restricted to a specific French-American-British (FAB) subtype, but was significantly (p<0.05, one-way ANOVA) associated with monocytic (FAB M4, M5) differentiation. In addition, no association with a particular cytogenetic abnormality or with expression of MHC class I was observed. Reverse signaling via CD137L into AML cells (n=10) significantly induced the release of the immunoregulatory cytokines IL-10 and TNF (both p<0.05, Mann-Whitney U-test). Surprisingly and in contrast to available data regarding the function of murine CD137, we found that in humans blocking CD137-CD137L interaction caused a significant increase in NK cell cytotoxicity and IFN-γ production about 50% (both p<0.05, Mann-Whitney U-test) in coculture assays with CD137L-expressing patient AML cells and AML cell lines. The inhibitory effect of CD137 on NK cell reactivity was further confirmed in cocultures of NK cells with CD137L-transfectants and by triggering CD137 with an agonistic monoclonal antibody. This indicates that CD137 mediates opposite effects in murine compared to human NK cells. Furthermore we conclude that CD137L expression substantially influences tumor immunoediting by AML cells and diminishes NK cell reactivity against AML.


Sign in / Sign up

Export Citation Format

Share Document