scholarly journals Symmetry breaking in the female germline cyst

2021 ◽  
Author(s):  
Dmitry Nashchekin ◽  
Lara Busby ◽  
Maximilian Jacobs ◽  
Iolo Squires ◽  
Daniel St Johnston

In mammals and flies, only a limited number of cells in a multicellular female germline cyst become oocytes, but how the oocyte is selected is unknown. Here we show that the microtubule minus end-stabilizing protein, Patronin/CAMSAP marks the future Drosophila oocyte and is required for oocyte specification. The spectraplakin, Shot, recruits Patronin to the fusome, a branched structure extending into all cyst cells. Patronin stabilizes more microtubules in the cell with most fusome and this weak asymmetry is amplified by Dynein-dependent transport of Patronin-stabilized microtubules. This forms a polarized microtubule network, along which Dynein transports oocyte determinants into the presumptive oocyte. Thus, Patronin amplifies a weak fusome anisotropy to break cyst symmetry. These findings reveal a molecular mechanism of oocyte selection in the germline cyst.

Science ◽  
2021 ◽  
Vol 374 (6569) ◽  
pp. 874-879
Author(s):  
D. Nashchekin ◽  
L. Busby ◽  
M. Jakobs ◽  
I. Squires ◽  
D. St. Johnston

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Clemente F. Arias ◽  
Miguel A. Herrero ◽  
Claudio D. Stern ◽  
Federica Bertocchini

2022 ◽  
Author(s):  
Matthew R Hannaford ◽  
Rong Liu ◽  
Neil Billington ◽  
Zachary T Swider ◽  
Brian J Galletta ◽  
...  

Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosome nucleated microtubules with motor proteins. However, it remains unknown how centrioles migrate in cellular contexts in which centrioles do not nucleate microtubules. Here, we demonstrate that during interphase inactive centrioles move directly along the noncentrosomal microtubule network as cargo for the motor protein Kinesin-1. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. PLP directly interacts with the cargo binding domain of Kinesin-1 and they comigrate on microtubules in vitro. Finally, we demonstrate that PLP-Kinesin-1 dependent transport is essential for centrosome asymmetry age dependent centrosome inheritance in asymmetric stem cell division.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 4927-4937 ◽  
Author(s):  
A. Gonzalez-Reyes ◽  
H. Elliott ◽  
D. St Johnston

The two main body axes in Drosophila become polarised as a result of a series of symmetry-breaking steps during oogenesis. Two of the sixteen germline cells in each egg chamber develop as pro-oocytes, and the first asymmetry arises when one of these cells is selected to become the oocyte. Anterior-posterior polarity originates when the oocyte then comes to lie posterior to the nurse cells and signals through the Gurken/Egfr pathway to induce the adjacent follicle cells to adopt a posterior fate. This directs the movement of the germinal vesicle and associated gurken mRNA from the posterior to an anterior corner of the oocyte, where Gurken protein signals for a second time to induce the dorsal follicle cells, thereby polarising the dorsal-ventral axis. Here we describe a group of five genes, the spindle loci, which are required for each of these polarising events. spindle mutants inhibit the induction of both the posterior and dorsal follicle cells by disrupting the localisation and translation of gurken mRNA. Moreover, the oocyte often fails to reach the posterior of mutant egg chambers and differentiates abnormally. Finally, double mutants cause both pro-oocytes to develop as oocytes, by delaying the choice between these two cells. Thus, these mutants reveal a novel link between oocyte selection, oocyte positioning and axis formation in Drosophila, leading us to propose that the spindle genes act in a process that is common to several of these events.


2004 ◽  
Vol 266 (1) ◽  
pp. 43-61 ◽  
Author(s):  
Malgorzata Kloc ◽  
Szczepan Bilinski ◽  
Matthew T Dougherty ◽  
Eric M Brey ◽  
Laurence D Etkin

Author(s):  
Yih-Tai Chen ◽  
Ursula Euteneuer ◽  
Ken B. Johnson ◽  
Michael P. Koonce ◽  
Manfred Schliwa

The application of video techniques to light microscopy and the development of motility assays in reactivated or reconstituted model systems rapidly advanced our understanding of the mechanism of organelle transport and microtubule dynamics in living cells. Two microtubule-based motors have been identified that are good candidates for motors that drive organelle transport: kinesin, a plus end-directed motor, and cytoplasmic dynein, which is minus end-directed. However, the evidence that they do in fact function as organelle motors is still indirect.We are studying microtubule-dependent transport and dynamics in the giant amoeba, Reticulomyxa. This cell extends filamentous strands backed by an extensive array of microtubules along which organelles move bidirectionally at up to 20 μm/sec (Fig. 1). Following removal of the plasma membrane with a mild detergent, organelle transport can be reactivated by the addition of ATP (1). The physiological, pharmacological and biochemical characteristics show the motor to be a cytoplasmic form of dynein (2).


Author(s):  
D.J. Eaglesham

Convergent Beam Electron Diffraction is now almost routinely used in the determination of the point- and space-groups of crystalline samples. In addition to its small-probe capability, CBED is also postulated to be more sensitive than X-ray diffraction in determining crystal symmetries. Multiple diffraction is phase-sensitive, so that the distinction between centro- and non-centro-symmetric space groups should be trivial in CBED: in addition, the stronger scattering of electrons may give a general increase in sensitivity to small atomic displacements. However, the sensitivity of CBED symmetry to the crystal point group has rarely been quantified, and CBED is also subject to symmetry-breaking due to local strains and inhomogeneities. The purpose of this paper is to classify the various types of symmetry-breaking, present calculations of the sensitivity, and illustrate symmetry-breaking by surface strains.CBED symmetry determinations usually proceed by determining the diffraction group along various zone axes, and hence finding the point group. The diffraction group can be found using either the intensity distribution in the discs


Author(s):  
Heide Schatten ◽  
Neidhard Paweletz ◽  
Ron Balczon

To study the role of sulfhydryl group formation during cell cycle progression, mammalian tissue culture cells (PTK2) were exposed to 100¼M 2-mercaptoethanol for 2 to 6 h during their exponential phase of growth. The effects of 2-mercaptoethanol on centrosomes, chromosomes, microtubules, membranes and intermediate filaments were analyzed by transmission electron microscopy (TEM) and by immunofluorescence microscopy (IFM) methods using a human autoimmune antibody directed against centrosomes (SPJ), and a mouse monoclonal antibody directed against tubulin (E7). Chromosomes were affected most by this treatment: premature chromosome condensation was detected in interphase nuclei, and the structure in mitotic chromosomes was altered compared to control cells. This would support previous findings in dividing sea urchin cells in which chromosomes are arrested at metaphase while the centrosome splitting cycle continues. It might also support findings that certairt-sulfhydryl-blocking agents block cyclin destruction. The organization of the microtubule network was scattered probably due to a looser organization of centrosomal material at the interphase centers and at the mitotic poles.


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


Sign in / Sign up

Export Citation Format

Share Document