scholarly journals Cortico-brainstem mechanisms of biased perceptual decision-making in the context of pain

2018 ◽  
Author(s):  
K. Wiech ◽  
F. Eippert ◽  
J. Vandekerckhove ◽  
J. Zaman ◽  
K. Placek ◽  
...  

AbstractPerceptual decision-making is commonly studied using stimuli with different physical properties but of comparable affective value. Here, we investigate neural processes underlying human perceptual decisions in the affectively rich domain of pain using a drift-diffusion model in combination with a probabilistic cueing paradigm. This allowed us to characterize a novel role for the dorsolateral prefrontal cortex (DLPFC), whose anticipatory responses reflecting a decision bias were dependent on the affective value of the stimulus. During intense noxious stimulation, these model-based anticipatory DLPFC responses were linked to an engagement of the periaqueductal gray (PAG), a midbrain region implicated in defensive responses including analgesia. Complementing these findings on biased decision-making, the model parameter reflecting sensory processing predicted subcortical responses (in amygdala and PAG) when expectations were violated. Our findings highlight the importance of taking a broader perspective on perceptual decisions and link decisions about pain with subcortical circuitry implicated in endogenous pain modulation.

2018 ◽  
Author(s):  
Fredrik Allenmark ◽  
Hermann J. Müller ◽  
Zhuanghua Shi

AbstractMany previous studies on visual search have reported inter-trial effects, that is, observers respond faster when some target property, such as a defining feature or dimension, or the response associated with the target repeats versus changes across consecutive trial episodes. However, what processes drive these inter-trial effects is still controversial. Here, we investigated this question using a combination of Bayesian modeling of belief updating and evidence accumulation modeling in perceptual decision-making. In three visual singleton (‘pop-out’) search experiments, we explored how the probability of the response-critical states of the search display (e.g., target presence/absence) and the repetition/switch of the target-defining dimension (color/ orientation) affect reaction time distributions. The results replicated the mean reaction time (RT) inter-trial and dimension repetition/switch effects that have been reported in previous studies. Going beyond this, to uncover the underlying mechanisms, we used the Drift-Diffusion Model (DDM) and the Linear Approach to Threshold with Ergodic Rate (LATER) model to explain the RT distributions in terms of decision bias (starting point) and information processing speed (evidence accumulation rate). We further investigated how these different aspects of the decision-making process are affected by different properties of stimulus history, giving rise to dissociable inter-trial effects. We approached this question by (i) combining each perceptual decision making model (DDM or LATER) with different updating models, each specifying a plausible rule for updating of either the starting point or the rate, based on stimulus history, and (ii) comparing every possible combination of trial-wise updating mechanism and perceptual decision model in a factorial model comparison. Consistently across experiments, we found that the (recent) history of the response-critical property influences the initial decision bias, while repetition/switch of the target-defining dimension affects the accumulation rate, likely reflecting an implicit ‘top-down’ modulation process. This provides strong evidence of a disassociation between response- and dimension-based inter-trial effects.


2011 ◽  
Vol 21 (11) ◽  
pp. 980-983 ◽  
Author(s):  
Marios G. Philiastides ◽  
Ryszard Auksztulewicz ◽  
Hauke R. Heekeren ◽  
Felix Blankenburg

2016 ◽  
Author(s):  
James J Bonaiuto ◽  
Archy de Berker ◽  
Sven Bestmann

The left dorsolateral prefrontal cortex (dlPFC) has been linked to the accumulation and comparison of perceptual evidence for decision making independent of sensory and response modalities. We investigated the possible neural dynamics underlying the role of dlPFC in perceptual decision making, through a combination of noninvasive neurostimulation in humans and computational modeling. First, we used an established and biophysically realistic model of a decision making network that employs competition between neural populations. Simulation of depolarizing noninvasive brain stimulation in this model decreased decision time, while hyperpolarizing stimulation increased it. This behavioral effect was caused by an increase in the rate of neural activity integration via recurrent connections, as well as changes in the susceptibility of the network to noisy background inputs which modulated population firing rate differences prior to the onset of the stimulus. These pre-stimulus differences biased the response to one or the other option, thus speeding or slowing decisions. We then tested these model predictions in healthy participants performing a perceptual decision making task while receiving transcranial direct current stimulation (tDCS) over the left dlPFC, analogous to our simulated network stimulation. We found a striking match between model predictions and experimental results: depolarizing (inward) currents reduced and hyperpolarizing (outward) currents increased response times, but accuracy remained unaffected. Our results provide interventional evidence for the role of left dlPFC in perceptual decision making, and suggest that this region integrates and compares sensory evidence through competitive interactions between pyramidal cell populations which are selective for each response option. Mechanistically, our model suggests that stimulation of this region changes the rate at which evidence can be accumulated through recurrent activity and its susceptibility to background noise. More generally, our approach demonstrates that a linkage between computational modeling and noninvasive brain stimulation allows mechanistic accounts of brain function to be causally tested.


2018 ◽  
Vol 41 ◽  
Author(s):  
Patrick Simen ◽  
Fuat Balcı

AbstractRahnev & Denison (R&D) argue against normative theories and in favor of a more descriptive “standard observer model” of perceptual decision making. We agree with the authors in many respects, but we argue that optimality (specifically, reward-rate maximization) has proved demonstrably useful as a hypothesis, contrary to the authors’ claims.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Genís Prat-Ortega ◽  
Klaus Wimmer ◽  
Alex Roxin ◽  
Jaime de la Rocha

AbstractPerceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.


Mindfulness ◽  
2021 ◽  
Author(s):  
Sungjin Im ◽  
Maya A. Marder ◽  
Gabriella Imbriano ◽  
Tamara J. Sussman ◽  
Aprajita Mohanty

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


Sign in / Sign up

Export Citation Format

Share Document