VAMP8 contributes to TRIM6-mediated type-I interferon antiviral response during West Nile virus infection
ABSTRACTMembers of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In absence of TRIM6 function, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite numerous mechanisms to restrict vertebrate host’s IFN-I response, West Nile Virus (WNV) replication is sensitive to pre-treatment with IFN-I. However, the regulators and products of the IFN-I pathway important in regulating WNV replications are incompletely defined. Consistent with WNV’s sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6 KO) A549 cells WNV replication is significantly increased. Additionally, induction of Ifnb mRNA was delayed and the expression of several IFN-stimulated genes (ISGs) was reduced in TRIM6 KO cells. IFNβ pre-treatment was more effective in protecting against subsequent WNV infection in wt cells, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next generation sequencing, we identified potential factors involved in this TRIM6-mediated antiviral response. One identified gene, VAMP8, is a soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) in the vesicle-associated membrane protein subfamily. Knockdown of VAMP8 resulted in reduced STAT1 phosphorylation and impaired induction of several ISGs following WNV infection or IFNβ treatment. Therefore, VAMP8 is a novel gene involved in the regulation of IFN-I signaling, and its expression is dependent on TRIM6 function. Overall, these results indicate that TRIM6 contributes to the antiviral response against WNV by regulating the IFN-I system.IMPORTANCEWNV is a mosquito-borne flavivirus that poses threat to human health across large discontinuous areas throughout the world. Infection with WNV results in febrile illness, which can progress to severe neurological disease. Currently, there are no approved treatment options to control WNV infection. Understanding the cellular immune responses that regulate viral replication is important in diversifying the resources available to control WNV. Here we show that the elimination of TRIM6 in human cells results in an increase in WNV replication and alters the expression and function of other components of the IFN-I pathway through VAMP8. Dissecting the interactions between WNV and host defenses both informs basic molecular virology and promotes the development of host- and viral-targeted antiviral strategies.