scholarly journals A glycogenin homolog controls Toxoplasma gondii growth via glycosylation of an E3 ubiquitin ligase

2019 ◽  
Author(s):  
Msano Mandalasi ◽  
Hyun W. Kim ◽  
David Thieker ◽  
M. Osman Sheikh ◽  
Elisabet Gas-Pascual ◽  
...  

ABSTRACTSkp1, a subunit of E3 Skp1/Cullin-1/F-box protein ubiquitin ligases, is uniquely modified in protists by an O2-dependent prolyl hydroxylase that generates the attachment site for a defined pentasaccharide. Previous studies demonstrated the importance of the core glycan for growth of the parasite Toxoplasma gondii in fibroblasts, but the significance of the non-reducing terminal sugar was unknown. Here, we find that a homolog of glycogenin, an enzyme that can initiate and prime glycogen synthesis in yeast and animals, is required to catalyze the addition of an α-galactose in 3-linkage to the subterminal glucose to complete pentasaccharide assembly in cells. A strong selectivity of the enzyme (Gat1) for Skp1 in extracts is consistent with other evidence that Skp1 is the sole target of the glycosyltransferase pathway. gat1-disruption results in slow growth attesting to the importance of the terminal sugar. Molecular dynamics simulations provide an explanation for this finding and confirm the potential of the full glycan to control Skp1 organization as in the amoebozoan Dictyostelium despite the different terminal disaccharide assembled by different glycosyltransferases. Though Gat1 also exhibits low α-glucosyltransferase activity like glycogenin, autoglycosylation is not detected and gat1-disruption reveals no effect on starch accumulation. A crystal structure of the ortholog from the crop pathogen Pythium ultimum explains the distinct substrate preference and regiospecificity relative to glycogenin. A phylogenetic analysis suggests that Gat1 is related to the evolutionary progenitor of glycogenin, and acquired a role in glycogen formation following the ancestral disappearance of the underlying Skp1 glycosyltransferase prior to amoebozoan emergence.

2020 ◽  
Vol 295 (27) ◽  
pp. 9223-9243 ◽  
Author(s):  
Msano Mandalasi ◽  
Hyun W. Kim ◽  
David Thieker ◽  
M. Osman Sheikh ◽  
Elisabet Gas-Pascual ◽  
...  

Skp1, a subunit of E3 Skp1/Cullin-1/F-box protein ubiquitin ligases, is modified by a prolyl hydroxylase that mediates O2 regulation of the social amoeba Dictyostelium and the parasite Toxoplasma gondii. The full effect of hydroxylation requires modification of the hydroxyproline by a pentasaccharide that, in Dictyostelium, influences Skp1 structure to favor assembly of Skp1/F-box protein subcomplexes. In Toxoplasma, the presence of a contrasting penultimate sugar assembled by a different glycosyltransferase enables testing of the conformational control model. To define the final sugar and its linkage, here we identified the glycosyltransferase that completes the glycan and found that it is closely related to glycogenin, an enzyme that may prime glycogen synthesis in yeast and animals. However, the Toxoplasma enzyme catalyzes formation of a Galα1,3Glcα linkage rather than the Glcα1,4Glcα linkage formed by glycogenin. Kinetic and crystallographic experiments showed that the glycosyltransferase Gat1 is specific for Skp1 in Toxoplasma and also in another protist, the crop pathogen Pythium ultimum. The fifth sugar is important for glycan function as indicated by the slow-growth phenotype of gat1Δ parasites. Computational analyses indicated that, despite the sequence difference, the Toxoplasma glycan still assumes an ordered conformation that controls Skp1 structure and revealed the importance of nonpolar packing interactions of the fifth sugar. The substitution of glycosyltransferases in Toxoplasma and Pythium by an unrelated bifunctional enzyme that assembles a distinct but structurally compatible glycan in Dictyostelium is a remarkable case of convergent evolution, which emphasizes the importance of the terminal α-galactose and establishes the phylogenetic breadth of Skp1 glycoregulation.


1967 ◽  
Vol 105 (2) ◽  
pp. 515-519 ◽  
Author(s):  
V. N. Nigam

Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.


1994 ◽  
Vol 266 (4) ◽  
pp. E583-E591 ◽  
Author(s):  
Z. Zhang ◽  
J. Radziuk

Lactate has been found to enhance the formation of glycogen from both glucose and lactate as substrate (Z. Zhang and J. Radziuk. Biochem. J. 280: 415–419, 1991). To evaluate the relative importance of its role as substrate and regulatory factor, a dual dose-response evaluation was done by adding variable amounts of glucose and lactate to the medium in a recirculating perfused rat liver preparation. Nine groups of perfusions were performed utilizing three different levels of carbon infusion into the system: 0.25, 1.0, and 2.0 mg/min. These levels of carbon infusion were further subdivided into different relative amounts of glucose and lactate. Lactate uptake by the perfused liver was linearly related with net glucose output, regardless of the glucose concentrations. In contrast to this, the effect of lactate uptake on the rate of glycogen synthesis is saturable. Moreover, the rate of glycogen formation at which this saturation occurs is dependent only on the mean perfusate glucose concentration. The highest amount of glycogen formed in a 2-h period was 50 +/- 7 mg and the lowest 3.4 +/- 0.3 mg. A family of dose-response curves was generated describing this dual dependence of glycogen formation (both direct and gluconeogenetic pathways) on lactate and glucose.


1969 ◽  
Vol 115 (2) ◽  
pp. 315-322 ◽  
Author(s):  
V. N. Nigam

Affinity of glucose, fructose and mannose for tumour hexokinase and their rates of phosphorylation at saturation concentration have been correlated with rates of glycogen synthesis by intact tumour cells at different concentrations of the three substrates. Competition experiments with one sugar labelled and the other sugar unlabelled indicate inhibition of glycogen synthesis by the sugar with a low Km for hexokinase. Glycogen synthesis from glucose 1-phosphate in aged cells and from nucleoside in freshly prepared cells is stimulated by fructose and inhibited by glucose. The decrease in glycogen formation from glucose 1-phosphate by oligomycin is partially overcome by increased fructose concentrations. These results are explained by an activation of α-glucan phosphorylase by fructose and an inhibition of this enzyme by glucose. It is suggested that differences in localization of glucose 6-phosphate, available to the intact cell in various ways, determine its transformation into glycogen by either the UDP-glucose–α-glucan glucosyltransferase reaction or by the α-glucan phosphorylase reaction.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Yina Wang ◽  
Keyi Wang ◽  
Jorge A. Masso-Silva ◽  
Amariliz Rivera ◽  
Chaoyang Xue

ABSTRACT Cryptococcus neoformans is a fungal pathogen that infects the lungs and then often disseminates to the central nervous system, causing meningitis. How Cryptococcus is able to suppress host immunity and escape the antifungal activity of macrophages remains incompletely understood. We reported that the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase, promotes Cryptococcus virulence by regulating host-Cryptococcus interactions. Our recent studies demonstrated that the fbp1Δ mutant elicited superior protective Th1 host immunity in the lungs and that the enhanced immunogenicity of heat-killed fbp1Δ yeast cells can be harnessed to confer protection against a subsequent infection with the virulent parental strain. We therefore examined the use of heat-killed fbp1Δ cells in several vaccination strategies. Interestingly, the vaccine protection remains effective even in mice depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that vaccinating mice with heat-killed fbp1Δ induces significant cross-protection against challenge with diverse invasive fungal pathogens, including C. neoformans, C. gattii, and Aspergillus fumigatus, as well as partial protection against Candida albicans. Thus, our data suggest that the heat-killed fbp1Δ strain has the potential to be a suitable vaccine candidate against cryptococcosis and other invasive fungal infections in both immunocompetent and immunocompromised populations. IMPORTANCE Invasive fungal infections kill more than 1.5 million people each year, with limited treatment options. There is no vaccine available in clinical use to prevent and control fungal infections. Our recent studies showed that a mutant of the F-box protein Fbp1, a subunit of the SCF(Fbp1) E3 ligase in Cryptococcus neoformans, elicited superior protective Th1 host immunity. Here, we demonstrate that the heat-killed fbp1Δ cells (HK-fbp1) can be harnessed to confer protection against a challenge by the virulent parental strain, even in animals depleted of CD4+ T cells. This finding is particularly important in the context of HIV/AIDS-induced immune deficiency. Moreover, we observed that HK-fbp1 vaccination induces significant cross-protection against challenge with diverse invasive fungal pathogens. Thus, our data suggest that HK-fbp1 has the potential to be a broad-spectrum vaccine candidate against invasive fungal infections in both immunocompetent and immunocompromised populations.


2007 ◽  
Vol 27 (20) ◽  
pp. 7284-7290 ◽  
Author(s):  
Wei-Yi Chen ◽  
Jui-Hsia Weng ◽  
Chen-Che Huang ◽  
Bon-chu Chung

ABSTRACT Histone deacetylase (HDAC) inhibitors such as trichostatin A and valproic acid modulate transcription of many genes by inhibiting the activities of HDACs, resulting in the remodeling of chromatin. Yet this effect is not universal for all genes. Here we show that HDAC inhibitors suppressed the expression of steroidogenic gene CYP11A1 and decreased steroid secretion by increasing the ubiquitination and degradation of SF-1, a factor important for the transcription of all steroidogenic genes. This was accompanied by increased expression of Ube2D1 and SKP1A, an E2 ubiquitin conjugase and a subunit of the E3 ubiquitin ligase in the Skp1/Cul1/F-box protein (SCF) family, respectively. Reducing SKP1A expression with small interfering RNA resulted in recovery of SF-1 levels, demonstrating that the activity of SCF E3 ubiquitin ligase is required for the SF-1 degradation induced by HDAC inhibitors. Overexpression of exogenous SF-1 restored steroidogenic activities even in the presence of HDAC inhibitors. Thus, increased SF-1 degradation is the cause of the reduction in steroidogenesis caused by HDAC inhibitors. The increased SKP1A expression and SCF-mediated protein degradation could be the mechanism underlying the mode of action of HDAC inhibitors.


1995 ◽  
Vol 269 (6) ◽  
pp. E1037-E1043 ◽  
Author(s):  
D. Massillon ◽  
W. Chen ◽  
M. Hawkins ◽  
R. Liu ◽  
N. Barzilai ◽  
...  

Mice were studied with the euglycemic hyperinsulinemic and the hyperglycemic clamp techniques after a 6-h fast: 1) euglycemic (6.7 +/- 0.2 mM) hyperinsulinemia (approximately 800 microU/ml); 2) hyperglycemic (15.3 +/- 0.4 mM) hyperinsulinemia (approximately 800 microU/ml). All mice received an infusion of [3-3H]glucose and [U-14C]lactate. Basal hepatic glucose production (HGP) averaged approximately 170 mumol.kg-1.min-1 in both groups. During euglycemic and hyperglycemic hyperinsulinemia, HGP decreased by 53% (to 76.7 +/- 11.1 mumol.kg-1.min-1; P < 0.01) and 74% (to 43.3 +/- 7.2 mumol.kg-1.min-1; P < 0.01), respectively. Hyperglycemia increased glucose cycling (by 2.1-fold; P < 0.01) and the contribution of gluconeogenesis to HGP (88 vs. 43%; P < 0.01) while decreasing that of glycogenolysis (12 vs. 57%; P < 0.01). The percentage of neosynthetized hepatic glycogen formed via the direct pathway was markedly increased during hyperglycemia (53 +/- 2% vs. 23 +/- 3%; P < 0.01): These data indicate that the assessment of hepatic glucose fluxes can be accomplished in conscious unrestrained mice and that, in the presence of hyperinsulinemia, hyperglycemia causes 1) a further inhibition of HGP mainly via inhibition of glycogenolysis and increase in hepatic glucose cycling; and 2) about a fivefold stimulation in the direct pathway of hepatic glycogen formation.


Author(s):  
Yuzo Watanabe ◽  
Hisaaki Yanai ◽  
Mayumi Kanagawa ◽  
Sakiko Suzuki ◽  
Satoko Tamura ◽  
...  

The crystal structures of a subunit of the formylglycinamide ribonucleotide amidotransferase, PurS, fromThermus thermophilus,Sulfolobus tokodaiiandMethanocaldococcus jannaschiiwere determined and their structural characteristics were analyzed. For PurS fromT. thermophilus, two structures were determined using two crystals that were grown in different conditions. The four structures in the dimeric form were almost identical to one another despite their relatively low sequence identities. This is also true for all PurS structures determined to date. A few residues were conserved among PurSs and these are located at the interaction site with PurL and PurQ, the other subunits of the formylglycinamide ribonucleotide amidotransferase. Molecular-dynamics simulations of the PurS dimer as well as a model of the complex of the PurS dimer, PurL and PurQ suggest that PurS plays some role in the catalysis of the enzyme by its bending motion.


Sign in / Sign up

Export Citation Format

Share Document