scholarly journals B cells extract antigens using Arp2/3-generated actin foci interspersed with linear filaments

2019 ◽  
Author(s):  
Sophie I. Roper ◽  
Laabiah Wasim ◽  
Dessislava Malinova ◽  
Michael Way ◽  
Susan Cox ◽  
...  

AbstractAntibody production depends on B cell internalization and presentation of antigens to helper T cells. To acquire antigens displayed by antigen-presenting cells, B cells form immune synapses and extract antigens by the mechanical activity of the acto-myosin cytoskeleton. While cytoskeleton organization driving the initial formation of the B cell synapse has been studied, how the cytoskeleton supports antigen extraction remains poorly understood. Here we show that after initial cell spreading, F-actin in B cell synapses forms a highly dynamic pattern composed of actin foci interspersed with linear filaments and myosin IIa. The foci are generated by Arp2/3-mediated branched-actin polymerization and stochastically associate with antigen clusters to mediate internalization. However, antigen extraction also requires the activity of formins, which reside near the foci and produce the interspersed filaments. Thus, a cooperation of branched-actin foci supported by linear filaments underlies B cell mechanics during antigen extraction.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sophie I Roper ◽  
Laabiah Wasim ◽  
Dessislava Malinova ◽  
Michael Way ◽  
Susan Cox ◽  
...  

Antibody production depends on B cell internalization and presentation of antigens to helper T cells. To acquire antigens displayed by antigen-presenting cells, B cells form immune synapses and extract antigens by the mechanical activity of the acto-myosin cytoskeleton. While cytoskeleton organization driving the initial formation of the B cell synapse has been studied, how the cytoskeleton supports antigen extraction remains poorly understood. Here we show that after initial cell spreading, F-actin in synapses of primary mouse B cells and human B cell lines forms a highly dynamic pattern composed of actin foci interspersed with linear filaments and myosin IIa. The foci are generated by Arp2/3-mediated branched-actin polymerization and stochastically associate with antigen clusters to mediate internalization. However, antigen extraction also requires the activity of formins, which reside near the foci and produce the interspersed filaments. Thus, a cooperation of branched-actin foci supported by linear filaments underlies B cell mechanics during antigen extraction.


1993 ◽  
Vol 178 (6) ◽  
pp. 2055-2066 ◽  
Author(s):  
M H Kosco-Vilbois ◽  
D Gray ◽  
D Scheidegger ◽  
M Julius

This study was designed to investigate whether follicular dendritic cells (FDC) can activate B cells to a state in which they can function as effective antigen-presenting cells (APC). High buoyant density (i.e., resting) B cells specific for 2,4-dinitro-fluorobenzene (DNP) were incubated with DNP-ovalbumin (OVA) bearing FDC, after which their capacity to process and present to an OVA-specific T cell clone was assessed. The efficacies of alternative sources of antigen and activation signals in the induction of B cell APC function were compared with those provided by FDC. Only FDC and Sepharose beads coated with anti-immunoglobulin (Ig)kappa monoclonal antibody provided the necessary stimulus. FDC carrying inappropriate antigens also induced B cell APC function in the presence of exogenous DNP-OVA. However, in circumstances where soluble DNP-OVA was limiting, FDC bearing complexes containing DNP, which could crosslink B cell Ig receptors, induced the most potent APC function. Analysis by flow cytometry revealed that within 24 h of coculture with FDC, a significant percentage of B cells increased in size and expressed higher levels of major histocompatibility complex class II. By 48 h, an upregulation of the costimulatory molecule, B7/BB1, occurred, but only when exposed to the FDC bearing DNP. Taken together, the results demonstrate that FDC have the capacity to activate resting B cells to a state in which they can function as APC for T cells. The stimuli that FDC provide may include: (a) an antigen-dependent signal that influences the upregulation of B7/BB1; and (b) possibly a signal independent of crosslinking mIg that results in Ig internalization. The relevance of these findings to the formation of germinal centers and maintenance of the humoral response is discussed.


Author(s):  
Thomas Dörner ◽  
Peter E. Lipsky

B cells have gained interest in rheumatoid arthritis (RA) beyond being the precursors of antibody-producing plasma cells since they are also a broader component of the adaptive immune system. They are capable of functioning as antigen-presenting cells for T-cell activation and can produce an array of cytokines. Disturbances of peripheral B-cell homeostasis together with the formation of ectopic lymphoid neogenesis within the inflamed synovium appears to be a characteristic of patients with RA. Enhanced generation of memory B cells and autoreactive plasma cells producing IgM-RF and ACPA-IgG antibodies together with formation of immune complexes contribute to the maintenance of RA, whereas treatment with B-cell-directed anti-CD20 and CLTA4-Ig therapy provides clinical benefit.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3316-3325 ◽  
Author(s):  
Andrea Bürkle ◽  
Matthias Niedermeier ◽  
Annette Schmitt-Gräff ◽  
William G. Wierda ◽  
Michael J. Keating ◽  
...  

Abstract CXCL13 is a homeostatic chemokine for lymphocyte homing and positioning within follicles of secondary lymphoid tissues, acting through its cognate receptor, CXCR5. Moreover, the CXCR5-CXCL13 axis plays a unique role in trafficking and homing of B1 cells. Here, we report that chronic lymphocytic leukemia (CLL) B cells express high levels of functional CXCR5. CXCR5 expression levels were similar on CLL B cells and normal CD5+ B cells, and higher compared with normal CD5− B cells, follicular B-helper T cells (TFH cells), or neoplastic B cells from other B-cell neoplasias. Stimulation of CLL cells with CXCL13 induces actin polymerization, CXCR5 endocytosis, chemotaxis, and prolonged activation of p44/42 mitogen-activated protein kinases. Anti-CXCR5 antibodies, pertussis toxin, and wortmannin inhibited chemotaxis to CXCL13, demonstrating the importance of Gi proteins and PI3 kinases for CXCR5 signaling. Moreover, CLL patients had significantly higher CXCL13 serum levels than volunteers, and CXCL13 levels correlated with β2 microglobulin. We detected CXCL13 mRNA expression by nurselike cells, and high levels of CXCL13 protein in supernatants of CLL nurselike cell cultures. By immunohistochemistry, we detected CXCL13+ expression by CD68+ macrophages in situ within CLL lymph nodes. These data suggest that CXCR5 plays a role in CLL cell positioning and cognate interactions between CLL and CXCL13-secreting CD68+ accessory cells in lymphoid tissues.


2016 ◽  
Vol 216 (1) ◽  
pp. 217-230 ◽  
Author(s):  
Katelyn M. Spillane ◽  
Pavel Tolar

Antibody production and affinity maturation are driven by B cell extraction and internalization of antigen from immune synapses. However, the extraction mechanism remains poorly understood. Here we develop DNA-based nanosensors to interrogate two previously proposed mechanisms, enzymatic liberation and mechanical force. Using antigens presented by either artificial substrates or live cells, we show that B cells primarily use force-dependent extraction and resort to enzymatic liberation only if mechanical forces fail to retrieve antigen. The use of mechanical forces renders antigen extraction sensitive to the physical properties of the presenting cells. We show that follicular dendritic cells are stiff cells that promote strong B cell pulling forces and stringent affinity discrimination. In contrast, dendritic cells are soft and promote acquisition of low-affinity antigens through low forces. Thus, the mechanical properties of B cell synapses regulate antigen extraction, suggesting that distinct properties of presenting cells support different stages of B cell responses.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0229170
Author(s):  
Veronika Kozlova ◽  
Aneta Ledererova ◽  
Adriana Ladungova ◽  
Helena Peschelova ◽  
Pavlina Janovska ◽  
...  

2003 ◽  
Vol 197 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Simon Fillatreau ◽  
David Gray

We investigated the mechanism of CD4 T cell accumulation in B cell follicles after immunization. Follicular T cell numbers were correlated with the number of B cells, indicating B cell control of the niche that T cells occupy. Despite this, we found no role for B cells in the follicular migration of T cells. Instead, T cells are induced to migrate into B cell follicles entirely as a result of interaction with dendritic cells (DCs). Migration relies on CD40-dependent maturation of DCs, as it did not occur in CD40-deficient mice but was reconstituted with CD40+ DCs. Restoration was not achieved by the activation of DCs with bacterial activators (e.g., lipopolysaccharide, CpG), but was by the injection of OX40L–huIgG1 fusion protein. Crucially, the up-regulation of OX40L (on antigen-presenting cells) and CXCR-5 (on T cells) are CD40-dependent events and we show that T cells do not migrate to follicles in immunized OX40-deficient mice.


1981 ◽  
Vol 154 (3) ◽  
pp. 676-687 ◽  
Author(s):  
E Nisbet-Brown ◽  
B Singh ◽  
E Diener

The restrictions imposed by the major histocompatibility complex on T-B-antigen-presenting cell (APC) interactions were studied with an in vivo adoptive transfer system, using mutually tolerant T and B cells taken from one-way fetal liver chimeras. It was found that the B cells and adoptive recipient (which provides APC function) have to share determinants encoded by the left-hand end of the H-2 complex for cooperation, whereas there is apparently no such requirement for T-B cell syngeneicity. Suppression arising from allogeneic effects between the host and the transferred T or B cells was excluded by the use of tolerant as well as normal adoptive recipients; both were functionally equivalent. We conclude that under experimental conditions, unrestricted helper T cell function and concurrent APC-B cell genetic restriction can be demonstrated in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 708-708
Author(s):  
Hongwei Wang ◽  
F. Cheng ◽  
K. Wright ◽  
J. Tao ◽  
M. Smith ◽  
...  

Abstract STAT3 signaling has emerged as a negative regulator of inflammatory responses in immune cells. In bone-marrow derived antigen-presenting cells (APCs), genetic or pharmacologic disruption of STAT3 led to inflammatory cells that effectively prime antigen-specific T-cell responses and restore the responsiveness of tolerized T-cells. In contrast, enhanced Stat3 activity in APCs resulted in increased production of the immunosuppressive cytokine IL-10 and induction of T-cell tolerance1. B-cell lymphomas being tumors derived from B-lymphocytes display intrinsic antigen-presenting capabilities. Augmentation of this APC function has been shown to result in effective anti-lymphoma immunity2. In this study we determined whether targeting Stat3 signaling might influence the intrinsic APC function of malignant B-cells and the responsiveness –or not- of antigen-specific CD4+ T-cells. First, we specifically block STAT3 signaling in A20 lymphoma B-cells by using a dominant negative variant of STAT3, Stat3b. Inhibition of STAT3 resulted in tumor cells capable not only of fully priming naïve antigen-specific CD4+T-cells but also able of restoring the responsiveness of tolerant T-cells from lymphoma bearing mice. Conversely, transfection of A20 B-cells with Stat3c, a constitutively activated mutant form of STAT3, led to T-cell unresponsiveness. Of note, manipulation of STAT3 in B cell tumors was associated with changes in the mRNA expression and protein levels of IL-10. Second, we evaluated the effects of two novel Stat3 inhibitors, CPA-7 (a platinum-containing compound that disrupts STAT3 DNA binding activity) and S3I-201 (inhibitor of Stat3:Stat3 complex formation and Stat3 DNA binding and transcriptional activities) in a murine model of Mantle Cell Lymphoma (MCL). In vitro treatment of FC-muMCL1 cells - derived from a tumor elicited in Em-Cyclin D1 transgenic mice- with increasing concentrations of either CPA-7 or S3I-201 resulted in an enhanced presentation of OVA-peptide to naïve CD4+ T-cells specific for a MHC class II restricted epitope of ovalbumin (OT-II cells). Indeed, these T-cells produce higher levels of IL-2 and IFN-gamma compared to anti-OVA T cells that encountered cognate antigen in untreated FC-muMCL1 cells. More importantly, MCL cells treated with CPA-7 restored the responsiveness of tolerized anti-OVA CD4+ T-cells. Finally, in vivo treatment of MCL-bearing mice with CPA-7 (5 mg/kg/iv given on days +21, +24 and +27 after tumor challenge) resulted in significant inhibition of p-Stat3 in malignant B-cells and augmentation of their APC function. Taken together, STAT3 signaling is involved in the regulation of the antigen-presenting capabilities of B-cell lymphomas and as such represents a novel molecular target to augment the immunogenicity of these tumors.


1984 ◽  
Vol 159 (3) ◽  
pp. 881-905 ◽  
Author(s):  
J D Ashwell ◽  
A L DeFranco ◽  
W E Paul ◽  
R H Schwartz

In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. Thus, small resting B cells can function as APC to a variety of T cells. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. Thus, the failure of some other laboratories to observe this phenomenon may be the result of the relative radiosensitivity of the antigen-presenting function of the B cells. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s).


Sign in / Sign up

Export Citation Format

Share Document