scholarly journals Genomic investigation of the strawberry pathogen Phytophthora fragariae indicates pathogenicity is associated with transcriptional variation in three key races

2019 ◽  
Author(s):  
Thomas M. Adams ◽  
Andrew D. Armitage ◽  
Maria K. Sobczyk ◽  
Helen J. Bates ◽  
Javier F. Tabima ◽  
...  

ABSTRACTThe oomycete Phytophthora fragariae is a highly destructive pathogen of cultivated strawberry (Fragaria × ananassa), causing the root rotting disease, ‘red core’. The host-pathogen interaction has a well described gene-for-gene resistance relationship, but to date neither candidate avirulence nor resistance genes have been identified. We sequenced a set of American, Canadian and UK isolates of known race type, along with three representatives of the closely related pathogen of the raspberry (Rubus idaeus), Phytophthora rubi, and found a clear population structure, with a high degree of nucleotide divergence seen between some race types and abundant private variation associated with race types 4 and 5. In contrast, between isolates defined as UK races 1, 2 & 3 (UK1-2-3) there was no evidence of gene loss or gain; or the presence of insertions/deletions (INDELs) or Single Nucleotide Polymorphisms (SNPs) within or in proximity to putative pathogenicity genes could be found associated with race variation. Transcriptomic analysis of representative UK1-2-3 isolates revealed abundant expression variation in key effector family genes associated with pathogen race; however, further long read sequencing did not reveal any long range polymorphisms to be associated with avirulence to race UK2 or UK3 resistance, suggesting either control in trans or other stable forms of epigenetic modification modulating gene expression. This work reveals the combined power of population resequencing to uncover race structure in pathosystems and in planta transcriptomic analysis to identify candidate avirulence genes. This work has implications for the identification of putative avirulence genes in the absence of associated expression data and points towards the need for detailed molecular characterisation of mechanisms of effector regulation and silencing in oomycete plant pathogens.

2020 ◽  
pp. PHYTO-10-20-047
Author(s):  
Nikita Gambhir ◽  
Zhian N. Kamvar ◽  
Rebecca Higgins ◽  
B. Sajeewa Amaradasa ◽  
Sydney E. Everhart

Stress from exposure to sublethal fungicide doses may cause genomic instability in fungal plant pathogens, which may accelerate the emergence of fungicide resistance or other adaptive traits. In a previous study, five strains of Sclerotinia sclerotiorum were exposed to sublethal doses of four fungicides with different modes of action, and genotyping showed that such exposure induced mutations. The goal of the present study was to characterize genome-wide mutations in response to sublethal fungicide stress in S. sclerotiorum and study the effect of genomic background on the mutational repertoire. The objectives were to determine the effect of sublethal dose exposure and genomic background on mutation frequency/type, distribution of mutations, and fitness costs. Fifty-five S. sclerotiorum genomes were sequenced and aligned to the reference genome. Variants were called and quality filtered to obtain high confidence calls for single nucleotide polymorphisms (SNPs), insertions/deletions (INDELs), copy number variants, and transposable element (TE) insertions. Results suggest that sublethal fungicide exposure significantly increased the frequency of INDELs in two strains from one genomic background (P value ≤ 0.05), while TE insertions were generally repressed for all genomic backgrounds and under all fungicide exposures. The frequency and/or distribution of SNPs, INDELs, and TE insertions varied with genomic background. A propensity for large duplications on chromosome 7 and aneuploidy of this chromosome were observed in the S. sclerotiorum genome. Mutation accumulation did not significantly affect the overall in planta strain aggressiveness (P value > 0.05). Understanding factors that affect pathogen mutation rates can inform disease management strategies that delay resistance evolution.


2017 ◽  
Vol 107 (4) ◽  
pp. 463-473 ◽  
Author(s):  
Lynn Epstein ◽  
Sukhwinder Kaur ◽  
Peter L. Chang ◽  
Noelia Carrasquilla-Garcia ◽  
Guiyun Lyu ◽  
...  

Fusarium oxysporum species complex (FOSC) isolates were obtained from celery with symptoms of Fusarium yellows between 1993 and 2013 primarily in California. Virulence tests and a two-gene dataset from 174 isolates indicated that virulent isolates collected before 2013 were a highly clonal population of F. oxysporum f. sp. apii race 2. In 2013, new highly virulent clonal isolates, designated race 4, were discovered in production fields in Camarillo, California. Long-read Illumina data were used to analyze 16 isolates: six race 2, one of each from races 1, 3, and 4, and seven genetically diverse FOSC that were isolated from symptomatic celery but are nonpathogenic on this host. Analyses of a 10-gene dataset comprising 38 kb indicated that F. oxysporum f. sp. apii is polyphyletic; race 2 is nested within clade 3, whereas the evolutionary origins of races 1, 3, and 4 are within clade 2. Based on 6,898 single nucleotide polymorphisms from the core FOSC genome, race 3 and the new highly virulent race 4 are highly similar with Nei’s Da = 0.0019, suggesting that F. oxysporum f. sp. apii race 4 evolved from race 3. Next generation sequences were used to develop PCR primers that allow rapid diagnosis of races 2 and 4 in planta.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Xueyi Dong ◽  
Luyi Tian ◽  
Quentin Gouil ◽  
Hasaru Kariyawasam ◽  
Shian Su ◽  
...  

Abstract Application of Oxford Nanopore Technologies’ long-read sequencing platform to transcriptomic analysis is increasing in popularity. However, such analysis can be challenging due to the high sequence error and small library sizes, which decreases quantification accuracy and reduces power for statistical testing. Here, we report the analysis of two nanopore RNA-seq datasets with the goal of obtaining gene- and isoform-level differential expression information. A dataset of synthetic, spliced, spike-in RNAs (‘sequins’) as well as a mouse neural stem cell dataset from samples with a null mutation of the epigenetic regulator Smchd1 was analysed using a mix of long-read specific tools for preprocessing together with established short-read RNA-seq methods for downstream analysis. We used limma-voom to perform differential gene expression analysis, and the novel FLAMES pipeline to perform isoform identification and quantification, followed by DRIMSeq and limma-diffSplice (with stageR) to perform differential transcript usage analysis. We compared results from the sequins dataset to the ground truth, and results of the mouse dataset to a previous short-read study on equivalent samples. Overall, our work shows that transcriptomic analysis of long-read nanopore data using long-read specific preprocessing methods together with short-read differential expression methods and software that are already in wide use can yield meaningful results.


2019 ◽  
Author(s):  
Tatsuya Nobori ◽  
Yiming Wang ◽  
Jingni Wu ◽  
Sara Christina Stolze ◽  
Yayoi Tsuda ◽  
...  

AbstractUnderstanding how gene expression is regulated in plant pathogens is crucial for pest control and thus global food security. An integrated understanding of bacterial gene regulation in the host is dependent on multi-omic datasets, but these are largely lacking. Here, we simultaneously characterized the transcriptome and proteome of a foliar bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana and identified a number of bacterial processes influenced by plant immunity at the mRNA and the protein level. We found instances of both concordant and discordant regulation of bacterial mRNAs and proteins. Notably, the tip component of bacterial type III secretion system was selectively suppressed by the plant salicylic acid pathway at the protein level, suggesting protein-level targeting of the bacterial virulence system by plant immunity. Furthermore, gene co-expression analysis illuminated previously unknown gene regulatory modules underlying bacterial virulence and their regulatory hierarchy. Collectively, the integrated in planta bacterial omics approach provides molecular insights into multiple layers of bacterial gene regulation that contribute to bacterial growth in planta and elucidate the role of plant immunity in controlling pathogens.


2019 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Marie Caroline Ferreira Laborde ◽  
Deila Magna dos Santos Botelho ◽  
Gabriel Alfonso Alvarez Rodriguez ◽  
Mário Lúcio Vilela de Resende ◽  
Marisa Vieira de Queiroz ◽  
...  

<p>Saprobe fungi and necrotrophic pathogens share the same niche within crop stubble and the search for fungi non-pathogenic to plants that are able to displace the plant pathogens from its overwintering substrate contributes to the disease management. Brown eye spot (<em>Cercospora coffeicola</em>) is among the most important coffee diseases, it is caused by a necrotrophic pathogen that has decaying leaves as its major source of inoculum. We have screened saprobe fungi for the ability to reduce <em>C. coffeicola</em> sporulation and viability and determined the possible mechanisms involved in the observed biocontrol. A selected saprobe fungus, <em>Phialomyces macrosporus</em>, reduced the pathogen’s viability by 40% both <em>in vitro</em> and <em>in vivo</em>. The fungus acts through antibiosis and competition for nutrients. It produced both volatile and non-volatile compounds that inhibited <em>C. coffeicola</em> growth, sporulation, and viability. It also produced the tissue maceration enzyme (polygalacturonase), which reduces the pathogen both in detached leaves or in planta. The reduction in the fungal viability either by the saprobe fungus or its polygalacturonase-fraction supernatant resulted in the reduction of the disease rate. Therefore, <em>P. macrosporus </em>is a potential microbial agent that can be used in an integrated management of brown eye spot through the reduction of the initial inoculum of the pathogen that survives and builds up in infected leaves.</p><p> </p>


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6905 ◽  
Author(s):  
Elena Maria Colombo ◽  
Cristina Pizzatti ◽  
Andrea Kunova ◽  
Claudio Gardana ◽  
Marco Saracchi ◽  
...  

Biocontrol microorganisms are emerging as an effective alternative to pesticides. Ideally, biocontrol agents (BCAs) for the control of fungal plant pathogens should be selected by an in vitro method that is high-throughput and is predictive of in planta efficacy, possibly considering environmental factors, and the natural diversity of the pathogen. The purpose of our study was (1) to assess the effects ofFusariumstrain diversity (N= 5) and culture media (N= 6) on the identification of biological control activity ofStreptomycesstrains (N= 20) againstFusariumpathogens of wheat in vitro and (2) to verify the ability of our in vitro screening methods to simulate the activity in planta. Our results indicate that culture media,Fusariumstrain diversity, and their interactions affect the results of an in vitro selection by dual culture assay. The results obtained on the wheat-based culture media resulted in the highest correlation score (r= 0.5) with the in planta root rot (RR) inhibition, suggesting that this in vitro method was the best predictor of in planta performance of streptomycetes against Fusarium RR of wheat assessed as extension of the necrosis on the root. Contrarily, none of the in vitro plate assays using the media tested could appropriately predict the activity of the streptomycetes against Fusarium foot rot symptoms estimated as the necrosis at the crown level. Considering overall data of correlation, the activity in planta cannot be effectively predicted by dual culture plate studies, therefore improved in vitro methods are needed to better mimic the activity of biocontrol strains in natural conditions. This work contributes to setting up laboratory standards for preliminary screening assays ofStreptomycesBCAs against fungal pathogens.


2021 ◽  
Author(s):  
Subodh K. Srivastava ◽  
Leandra M. Knight ◽  
Mark K. Nakhla ◽  
Z. Gloria Abad

Phytophthora is one of the most important genera of plant pathogens with many members causing high economic losses world-wide. To build robust molecular identification systems, it is very important to have information from well-authenticated specimens and in preference the ex-type specimens. The reference genomes of well-authenticated specimens form a critical foundation for genetics, biological research, and diagnostic applications. In this study, we describe four draft Phytophthora genomes resources for the Ex-type of P. citricola BL34 (P0716 WPC) (118 contigs for 50 Mb), and well-authenticated specimens of P. syringae BL57G (P10330 WPC) (591 contigs for 75 Mb), P. hibernalis BL41G (P3822 WPC) (404 contigs for 84 Mb), and P. nicotianae BL162 (P6303 WPC) (3984 contigs for 108 Mb) generated with MinION long-read High-Throughput Sequencing (HTS) technology (Oxford Nanopore Technologies, ONT). Using the quality reads we assembled high coverage genomes of P. citricola with 291X coverage and 16,662 annotated genes; P. nicotianae with 205X coverage and 29,271 annotated genes; P. syringae with 76X coverage and 23,331 annotated genes, and P. hibernalis with 42X coverage and 21,762 annotated genes. With the availability of genomes sequences and its annotations, we predict that these draft genomes will be accommodating for various basic and applied research including diagnostics to protect global agriculture.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S364-S364
Author(s):  
Roby Bhattacharyya ◽  
Alejandro Pironti ◽  
Bruce J Walker ◽  
Abigail Manson ◽  
Virginia Pierce ◽  
...  

Abstract Background Carbapenem-resistant Enterobacteriaceae (CRE) are a major public health threat. We report four clonally related Citrobacter freundii isolates harboring the blaKPC-3 carbapenemase in April–May 2017 that are nearly identical to a strain from 2014 at the same institution. Despite differing by ≤5 single nucleotide polymorphisms (SNPs), these isolates exhibited dramatic differences in carbapenemase plasmid architecture. Methods We sequenced four carbapenem-resistant C. freundii isolates from 2017 and compared them with an ongoing CRE surveillance project at our institution. SNPs were identified from Illumina MiSeq data aligned to a reference genome using the variant caller Pilon. Plasmids were assembled from Illumina and Oxford Nanopore sequencing data using Unicycler. Results The four 2017 isolates differed from one another by 0–5 chromosomal SNPs; two were identical. With one exception, these isolates differed by &gt;38,000 SNPs from 25 C. freundii isolates sequenced from 2013 to 2017 at the same institution for CRE surveillance. The exception was a 2014 isolate that differed by 13–16 SNPs from each 2017 isolate, with 13 SNPs common to all four. Each C. freundii isolate harbored wild-type blaKPC-3. Despite the close relationship among the 2017 cluster, the plasmids harboring the blaKPC-3 genes differed dramatically: the carbapenemase occurred in one of the two different plasmids, with rearrangements between these plasmids across isolates. The related 2014 isolate harbored both plasmids, each with a separate copy of blaKPC-3. No transmission chains were found between any of the affected patients. Conclusion WGS confirmed clonality among four contemporaneous blaKPC-3-containing C. freundii isolates, and marked similarity with a 2014 isolate, within an institution. That only 13–16 SNPs varied between the 2014 and 2017 isolates suggests durable persistence of the blaKPC-3 gene within this lineage in a hospital ecosystem. The plasmids harboring these carbapenemase genes proved remarkably plastic, with plasmid loss and rearrangements occurring on the same time scale as two to three chromosomal point mutations. Combining short and long-read sequencing in a case cluster uniquely revealed unexpectedly rapid dynamics of carbapenemase plasmids, providing critical insight into their manner of spread. Disclosures M. J. Ferraro, SeLux Diagnostics: Scientific Advisor and Shareholder, Consulting fee. D. C. Hooper, SeLux Diagnostics: Scientific Advisor, Consulting fee.


Sign in / Sign up

Export Citation Format

Share Document