Coherent acoustic oscillations in metallic nanoparticles generated with femtosecond optical pulses

1997 ◽  
Vol 55 (20) ◽  
pp. R13424-R13427 ◽  
Author(s):  
M. Nisoli ◽  
S. De Silvestri ◽  
A. Cavalleri ◽  
A. M. Malvezzi ◽  
A. Stella ◽  
...  
1995 ◽  
Vol 75 (25) ◽  
pp. 4702-4705 ◽  
Author(s):  
J. -Y. Bigot ◽  
J. -Y. Merle ◽  
O. Cregut ◽  
A. Daunois

2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


2020 ◽  
Vol 92 (2) ◽  
pp. 20101
Author(s):  
Behnam Kheyraddini Mousavi ◽  
Morteza Rezaei Talarposhti ◽  
Farshid Karbassian ◽  
Arash Kheyraddini Mousavi

Metal-assisted chemical etching (MACE) is applied for fabrication of silicon nanowires (SiNWs). We have shown the effect of amorphous sheath of SiNWs by treating the nanowires with SF6 and the resulting reduction of absorption bandwidth, i.e. making SiNWs semi-transparent in near-infrared (IR). For the first time, by treating the fabricated SiNWs with copper containing HF∕H2O2∕H2O solution, we have generated crystalline nanowires with broader light absorption spectrum, up to λ = 1 μm. Both the absorption and photo-luminescence (PL) of the SiNWs are observed from visible to IR wavelengths. It is found that the SiNWs have PL at visible and near Infrared wavelengths, which may infer presence of mechanisms such as forbidden gap transitions other can involvement of plasmonic resonances. Non-radiative recombination of excitons is one of the reasons behind absorption of SiNWs. Also, on the dielectric metal interface, the absorption mechanism can be due to plasmonic dissipation or plasmon-assisted generation of excitons in the indirect band-gap material. Comparison between nanowires with and without metallic nanoparticles has revealed the effect of nanoparticles on absorption enhancement. The broader near IR absorption, paves the way for applications like hyperthermia of cancer while the optical transition in near IR also facilitates harvesting electromagnetic energy at a broad spectrum from visible to IR.


2017 ◽  
Vol 13 (2) ◽  
pp. 4671-4677 ◽  
Author(s):  
A. M. Abdelghany ◽  
A.H. Oraby ◽  
Awatif A Hindi ◽  
Doaa M El-Nagar ◽  
Fathia S Alhakami

Bimetallic nanoparticles of silver (Ag) and gold (Au) were synthesized at room temperature using Curcumin. Reduction process of silver and gold ions with different molar ratios leads to production of different nanostructures including alloys and core-shells. Produced nanoparticles were characterized simultaneously with FTIR, UV/vis. spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDAX). UV/vis. optical absorption spectra of as synthesized nanoparticles reveals presence of surface palsmon resonance (SPR) of both silver at (425 nm) and gold at (540 nm) with small shift and broadness of gold band after mixing with resucing and capping agent in natural extract which suggest presence of bimetallic nano structure (Au/Ag). FTIR and EDAX data approve the presence of bimetallic nano structure combined with curcumin extract. TEM micrographs shows that silver and gold can be synthesized separately in the form of nano particles using curcumin extract. Synthesis of gold nano particles in presence of silver effectively enhance and control formation of bi-metallic structure.


Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


Sign in / Sign up

Export Citation Format

Share Document