Exploiting the potential of beam-compressing channel-cut monochromators for laboratory high-resolution small-angle X-ray scattering experiments

2019 ◽  
Vol 52 (3) ◽  
pp. 498-506 ◽  
Author(s):  
Peter Nádaždy ◽  
Jakub Hagara ◽  
Matej Jergel ◽  
Eva Majková ◽  
Petr Mikulík ◽  
...  

A systematic study of beam-compressing monolithic channel-cut monochromators (CCMs) with a V-shaped channel was performed. The CCMs were optimized in terms of a chosen output beam parameter for exploitation in laboratory high-resolution small-angle X-ray scattering (SAXS) and grazing-incidence SAXS (GISAXS) experiments. Ray-tracing simulations provided maps of particular Ge(220) CCM output beam parameters over the complete set of asymmetry angles of the two CCM diffractions. This allowed the design and fabrication of two dedicated CCMs, one optimized for maximum photon flux per detector pixel and the other for Kα2 suppression. The output beam quality was tested in SAXS/GISAXS experiments on a commercial setup with a liquid-metal-jet Ga microfocus X-ray source connected to 2D collimating Montel optics. The performance of the CCM optimized for maximum photon flux per detector pixel was limited by the quality of the inner channel walls owing to a strongly asymmetric design. However, the CCM optimized for Kα2 suppression exhibited an excellent resolution of 314 nm in real space. This was further enhanced up to 524 nm by a parallel Ge(220) CCM in the dispersive configuration at a still applicable output flux of 3 × 106 photon s−1. The 314 nm resolution outperforms by more than 2.5× the upper resolution limit of the same setup with a pinhole collimator instead of the CCM. Comparative SAXS measurements on the same setup with a Kratky block collimator as an alternative to the CCM showed that the CCM provided more than one order higher transmittance at a comparable resolution or twice higher resolution at a comparable transmittance. These results qualify CCMs for a new type of integrated reflective–diffractive optics consisting of Göbel mirrors and V-shaped CCMs for the next generation of high-performance microfocus laboratory X-ray sources.

2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Peter Nadazdy ◽  
Jakub Hagara ◽  
Petr Mikulik ◽  
Zdenko Zaprazny ◽  
Dusan Korytar ◽  
...  

A four-bounce monochromator assembly composed of Ge(111) and Ge(220) monolithic channel-cut monochromators with V-shaped channels in a quasi-dispersive configuration is presented. The assembly provides an optimal design in terms of the highest transmittance and photon flux density per detector pixel while maintaining high beam collimation. A monochromator assembly optimized for the highest recorded intensity per detector pixel of a linear detector placed 2.5 m behind the assembly was realized and tested by high-resolution X-ray diffraction and small-angle X-ray scattering measurements using a microfocus X-ray source. Conventional symmetric and asymmetric Ge(220) Bartels monochromators were similarly tested and the results were compared. The new assembly provides a transmittance that is an order of magnitude higher and 2.5 times higher than those provided by the symmetric and asymmetric Bartels monochromators, respectively, while the output beam divergence is twice that of the asymmetric Bartels monochromator. These results demonstrate the advantage of the proposed monochromator assembly in cases where the resolution can be partially sacrificed in favour of higher transmittance while still maintaining high beam collimation. Weakly scattering samples such as nanostructures are an example. A general advantage of the new monochromator is a significant reduction in the exposure time required to collect usable experimental data. A comparison of the theoretical and experimental results also reveals the current limitations of the technology of polishing hard-to-reach surfaces in X-ray crystal optics.


1984 ◽  
Vol 17 (5) ◽  
pp. 337-343 ◽  
Author(s):  
O. Yoda

A high-resolution small-angle X-ray scattering camera has been built, which has the following features. (i) The point collimation optics employed allows the scattering cross section of the sample to be directly measured without corrections for desmearing. (ii) A small-angle resolution better than 0.5 mrad is achieved with a camera length of 1.6 m. (iii) A high photon flux of 0.9 photons μs−1 is obtained on the sample with the rotating-anode X-ray generator operated at 40 kV–30 mA. (iv) Incident X-rays are monochromated by a bent quartz crystal, which makes the determination of the incident X-ray intensity simple and unambiguous. (v) By rotation of the position-sensitive proportional counter around the direct beam, anisotropic scattering patterns can be observed without adjusting the sample. Details of the design and performance are presented with some applications.


2013 ◽  
Vol 46 (6) ◽  
pp. 1544-1550 ◽  
Author(s):  
Matej Jergel ◽  
Peter Šiffalovič ◽  
Karol Végsö ◽  
Eva Majková ◽  
Dušan Korytár ◽  
...  

The application of V-shaped channel-cut GeSi(220) and Ge(220) monochromators for one-dimensional extreme X-ray beam compression was tested on a table-top setup for grazing-incidence small-angle X-ray scattering (GISAXS) with a microfocus source. A lattice constant gradient and different asymmetry angles of the diffractors were employed to enhance the compression factor to 21 and 15, respectively. It was demonstrated that the output beam parameters in terms of the size, divergence, photon flux and spectral bandwidth surpass those of the slit collimators used traditionally in GISAXS. A beam size far below 100 µm allows a high-resolution spatial GISAXS mapping, while the reciprocal space resolution of ∼500 nm approaches the level of synchrotron measurements and allows a fast one-shot detection of high-resolution GISAXS patterns. An oversampling shifts the detection limit up to ∼1 µm. The very short design of the compact high-resolution table-top GISAXS setup is another advantage of the extreme beam compression. Benefits of V-shaped monochromators for medium-resolution X-ray diffraction experiments as a bonus application are demonstrated by a comparison with parallel channel-cut monochromators combined with a slit.


2008 ◽  
Vol 41 (6) ◽  
pp. 1134-1139 ◽  
Author(s):  
Youli Li ◽  
Roy Beck ◽  
Tuo Huang ◽  
Myung Chul Choi ◽  
Morito Divinagracia

A simple hybrid design has been developed to produce practically scatterless aperture slits for small-angle X-ray scattering and high-resolution X-ray diffraction. The hybrid slit consists of a rectangular single-crystal substrate (e.g.Si or Ge) bonded to a high-density metal base with a large taper angle (> 10°). The beam-defining single-crystal tip is oriented far from any Bragg peak position with respect to the incident beam and hence produces none of the slit scattering commonly associated with conventional metal slits. It has been demonstrated that the incorporation of the scatterless slits leads to a much simplified design in small-angle X-ray scattering instruments employing only one or two apertures, with dramatically increased intensity (a threefold increase observed in the test setup) and improved low-angle resolution.


1996 ◽  
Vol 67 (9) ◽  
pp. 3021-3034 ◽  
Author(s):  
J. P. Wilcoxon ◽  
S. A. Craft ◽  
T. R. Thurston

2019 ◽  
Vol 26 (2) ◽  
pp. 439-444 ◽  
Author(s):  
Michael Sztucki ◽  
Joachim Leonardon ◽  
Pierre Van Vaerenbergh ◽  
Jacques Gorini ◽  
Peter Boesecke ◽  
...  

Crystal collimation offers a viable alternative to the commonly used pinhole collimation in small-angle X-ray scattering (SAXS) for specific applications requiring highest angular resolution. This scheme is not affected by the parasitic scattering and diffraction-limited beam broadening. The Darwin width of the rocking curve of the crystals mainly defines the ultimate beam divergence. For this purpose, a dispersive Si-111 crystal collimation set-up based on two well conditioned pseudo channel-cut crystals (pairs of well polished, independent parallel crystals) using a higher-order reflection (Si-333) has been developed. The gain in resolution is obtained at the expense of flux. The system has been installed at the TRUSAXS beamline ID02 (ESRF) for reducing the horizontal beam divergence in high-resolution mesurements. The precise mechanics of the system allows reproducible alignment of the Bragg condition. The high resolution achieved at a sample–detector distance of 31 m is demonstrated by ultra-small-angle X-ray scattering measurements on a model system consisting of micrometre-sized polystyrene latex particles with low polydispersity.


1997 ◽  
Vol 30 (5) ◽  
pp. 867-871 ◽  
Author(s):  
P. Bösecke ◽  
O. Diat

The high-brilliance beamline (BL4/ID2) at the European Synchrotron Radiation Facility (ESRF) in Grenoble has been constructed with the emphasis on time-resolved small-angle X-ray scattering and macromolecular crystallography. It has been open to users for two years. The beamline has opened up new areas in small-angle scattering research, facilitating (a) small-angle crystallography on structures with unit cells of several hundredths of nanometres, (b) overlap with the light scattering range for the study of optical systems, (c) high photon flux for time-resolved experiments and (d) a high spatial coherence allowing submicrometre imaging with X-rays. The set-up and the detector system of the small-angle scattering station are presented. A method for obtaining absolute scattering intensities is described. The parasitic background at the station is discussed in terms of absolute scattering intensities.


1991 ◽  
Vol 24 (1) ◽  
pp. 30-37 ◽  
Author(s):  
G. G. Long ◽  
P. R. Jemian ◽  
J. R. Weertman ◽  
D. R. Black ◽  
H. E. Burdette ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document