Corrosion inhibition of aluminum by oxalate self-assembling monolayer

2019 ◽  
Vol 66 (6) ◽  
pp. 768-773 ◽  
Author(s):  
P. Satyabama ◽  
Susai Rajendran ◽  
Tuan Anh Nguyen

Purpose This paper aims to evaluate the inhibition efficiency (IE) of oxalate ions in controlling corrosion of aluminum at pH 10. Design/methodology/approach The IE has been determined by the classical weight loss method. The corrosion behavior of aluminum was investigated by using potentiodynamic polarization and electrochemical impedance measurements. Ultra violet (UV)-visible and Fluorescence spectra have been used to analyze the film formed on the aluminum surface after immersion. Findings The maximum IE was 88 per cent, which was offered by a mixture of 250 ppm oxalate ions and 50 ppm [Zn2+]. Potentiodynamic polarization data revealed that the protective film was formed on the metal surface. UV-visible and Fluorescence spectra indicated the presence of Al3+−oxalate complex in the protective film formed on aluminum substrate after immersion in [OX]/[Zn2+] solution. Originality/value The findings of this work shed more light on the corrosion inhibition of aluminum by oxalate self-assembling monolayers.

Author(s):  
V. Dharmalingam ◽  
P. Arockia Sahayaraj ◽  
A. John Amalraj ◽  
R. Shobana ◽  
R. Mohan

The goal of studying corrosion process is to find means of minimizing corrosion or prevent it from occurring. The use of inhibitors is one of the most popular methods for corrosion protection. A protective film has been formed on the surface of the mild steel in a neutral aqueous environment using a synergistic mixture of an eco-friendly inhibitor viz., Potassium Sodium Tartrate (SPT) along with polyacrylic acid (PAA) and Zn2+ ions. The inhibiting effect of SPT, PAA and Zn2+ ions have been investigated by gravimetric studies, Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The investigations revealed that SPT acts as an excellent synergist in corrosion inhibition. Optimum concentrations of all the three components of the ternary formulation are established by gravimetric studies. Potentiodynamic polarization studies inferred that this mixture functions as a cathodic inhibitor. EIS studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of mild steel. Surface characterization techniques (FTIR, SEM, AFM) are also used to ascertain the nature of the protective film. The mechanical aspect of corrosion inhibition is proposed.


2018 ◽  
Vol 65 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Mohd Rashid ◽  
Umesh S. Waware ◽  
Afidah A. Rahim ◽  
A.M.S. Hamouda

Purpose The purpose of this study is to compare the inhibitive effect of polyaniline (PAni) and N-cetyl-N,N,N trimethyl ammonium bromide (CTAB)-stabilized PAni in a hydrochloric acid (HCl) medium. Design/methodology/approach PAni has been deposited potentiodynamically on mild steel in the presence of CTAB as a stabilizing agent to achieve high corrosion inhibition performance by the polymer deposition. The corrosion inhibition studies of CTAB-stabilized PAni inhibitor in 0.1 M HCl acidic solution was carried out by electrochemical methods, namely, open-circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy technique. Findings The results of electrochemical studies have shown that the CTAB-stabilized PAni inhibitor has higher corrosion efficiency than PAni on mild steel in 0.1 M HCl solution. The maximum per cent efficiency evaluated using the potentiodynamic polarization method is approximately 91.9. Originality/value CTAB-stabilized PAni has never been studied as a corrosion inhibitor for mild steel in an acidic medium. The investigations demonstrate relatively the better corrosion inhibition efficiency and high dispersion of the polymer in the acidic medium.


2011 ◽  
Vol 8 (2) ◽  
pp. 621-628 ◽  
Author(s):  
M. Anwar Sathiq ◽  
A. Jamal Abdul Nasser ◽  
P. Mohamed Sirajudeen

The influence ofN-(l-morpholinobenzyl)urea (MBU) on corrosion inhibition of mild steel in 1 M HCl was studied by weight loss, effect of temperature, potentiodynamic polarization and electrochemical impedance spectroscopy. The experimental results showed that the inhibition efficiency increases with increasing of MBU concentrations but decreases with increasing temperatures. The adsorption of MBU on the mild steel surface obeyed the Temkin’s adsorption isotherm. Potentiodynamic polarization curves showed that MBU acted as a cathodic inhibitor predominantly in hydrochloric acid. This was supported by the impedance measurements which showed a change in the charge transfer resistance and double layer capacitance indicating adsorption of MBU on the mild steel surface. Protective film formation against the acid attack is confirmed by SEM.


2017 ◽  
Vol 64 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Bahram Ramezanzadeh ◽  
Milad Mehdipour ◽  
S.Y. Arman ◽  
M. Ramezanzadeh

Purpose This study attempts to investigate corrosion inhibition properties of 1H-benzimidazole (B) and 1H-benzotriazole (BTA) on aluminum in 0.25 M HCl solution at different concentrations. Design/methodology/approach To this end, electrochemical techniques including electrochemical noise (EN), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used. Findings Results showed a greater corrosion inhibition efficiency of BTA than B on aluminum in HCl solution. BTA showed greater tendency to adsorption on the metal surface than B because of the inclusion of three nitrogen atoms. Originality/value The novelty of this work is comparing EN data with EIS and potentiodynamic polarization parameters.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amir Samadi ◽  
Reza Amini ◽  
Mehran Rostami ◽  
Pooneh Kardar ◽  
Michele Fedel

Purpose The purpose of this study was to evaluate the possibility of using conductive polymers such as polyaniline (PANI) as corrosion inhibitors for metals. Design/methodology/approach In this study, the effect of the addition of praseodymium (Pr3+) cations on the corrosion inhibition performance of PANI for AZ31 magnesium alloy was appraised through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. Findings The results of EIS and potentiodynamic polarization tests indicated the improvement of corrosion resistance of AZ31 during different immersion times. Research limitations/implications This anti-corrosion ability of PANI/Pr3+ composite applies as non-toxic environmentally friendly corrosion inhibitor on the self-healing corrosion protection properties. Practical implications The conductive polymers are interested for many industries. The reported data can be used by the formulators working in the R&D departments. Social implications The anti-corrosion ability of PANI/Pr3+ composite present a novel and high effective route against metal corrosion besides application of toxic corrosion. Originality/value The application of titanium dioxide coating in the field of architectural heritage is a great challenge. Therefore, the main objective of this study is to study the synthesis, characterization and corrosion inhibition performance of Pr3+ cations doped PANI nano-fibers as an anti-corrosion additive for AZ31 magnesium alloy in 3.5 Wt.% NaCl solution.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Akbar Ali Samsath Begum ◽  
Raja Mohamed Abdul Vahith ◽  
Vijay Kotra ◽  
Mohammed Rafi Shaik ◽  
Abdelatty Abdelgawad ◽  
...  

In the present study, the corrosion inhibition effect of Spilanthes acmella aqueous leaves extract (SA-LE) on mild steel was investigated in 1.0 M HCl solution at different temperature using weight loss, Tafel polarization, linear polarization resistance (LPR), and electrochemical impedance (EIS) measurements. Adsorption of inhibitor on the surface of the mild steel obeyed both Langmuir and Temkin adsorption isotherms. The thermodynamic and kinetic parameters were also calculated to determine the mechanism of corrosion inhibition. The inhibition efficiency was found to increase with an increase in the inhibitor concentration i.e., Spilanthes acmella aqueous leaves extract, however, the inhibition efficiency decreased with an increase in the temperature. The phytochemical constituents with functional groups including electronegative hetero atoms such as N, O, and S in the extract adsorbed on the metal surface are found responsible for the effective performance of the inhibitor, which was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopic (UV-Vis) studies. Protective film formation against corrosion was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle studies. The result shows that the leaves extract acts as corrosion inhibitor and is able to promote surface protection by blocking active sites on the metal.


2019 ◽  
Vol 66 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Walid Belmaghraoui ◽  
Aimad Mazkour ◽  
Hicham Harhar ◽  
Mourad Harir ◽  
Souad El Hajjaji

Purpose This study aims to investigate the corrosion inhibition effect of extracted oil from Ziziphus lotus fruit on corrosion of C38 carbon steel in 5.5 M H3PO4 solution using potentiodynamic polarization and impedance techniques. Design/methodology/approach Oil composition was determined using gas chromatography, and the results showed that oleic and palmitic acids present approximately 84.0 per cent of its total chemical content. Electrochemical impedance spectroscopy (EIS) data were analyzed by adapting it to a well-developed electric circuit model. The inhibition efficiency of Z. lotus oil was calculated and compared using Tafel polarization and EIS. Findings Accordingly, the oil extract was found to act as an anodic type inhibitor. Furthermore, inhibition efficiency of Z. lotus oil extract increase with oil concentrations and achieve approximately 70.5 per cent at 3 g/L solution of Z. lotus oil. Originality/value The results obtained from different tested methods were in line, and the oil was able to reduce significantly the kinetics of the corrosion process of C38 carbon steel.


2014 ◽  
Vol 61 (4) ◽  
pp. 241-249 ◽  
Author(s):  
Reena Kumari P.D. ◽  
Jagannath Nayak ◽  
A. Nityananda Shetty

Purpose – The purpose of this paper is to report the studies on the corrosion inhibition property of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (APTT) for the corrosion of 6061 Al-15 vol. pct. SiC(p) composite. Design/methodology/approach – The corrosion behavior of 6061 Al-15 vol. pct. SiC(p) composite was studied at different temperatures in 0.5-M sodium hydroxide (NaOH) solution in the presence of APTT by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopic techniques. The effect of inhibitor concentration and temperature on the inhibitor effect of APTT was studied. The surface morphology of the metal surface was investigated by scanning electron microscopy. The activation parameters for the corrosion of the composite and base alloy, as well as the thermodynamic parameters for the adsorption of APTT on the composite and alloy surfaces, were calculated. Findings – The inhibition efficiency of APTT increases with the increase in the concentration of the inhibitor and decreases with the increase in temperature. The adsorption of APTT on the composite was found to be through physisorption, obeying Langmuir’s adsorption isotherm. APTT acts as a mixed inhibitor with predominant cathodic action on the composite. Practical implications – APTT can be used as an inhibitor for the corrosion of 6061 Al-15 vol. pct. SiC(p) composite in the NaOH medium. Originality/value – This paper provides information regarding the corrosion inhibition property of APTT on 6061 Al-15 vol. pct. SiC(p) composite. An attempt was made to explain the mechanism of the inhibition action by APTT.


2021 ◽  
Vol 11 (5) ◽  
pp. 13019-13030

The extract of Justicia secunda (JS) leaves was investigated as an eco‐friendly corrosion inhibitor of aluminum in 0.5 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and scanning electron microscopy (SEM) techniques. The inhibitor concentrations used ranged from 50 to 250 ppm at 30, 40, and 50oC. Results show that Justicia secunda acts as a good inhibitor for aluminum. Its efficiency increased with increasing inhibitor concentration but decreased with increasing temperature. Maximum inhibition efficiency as high as 94.3% was found at 30°C for 250 ppm of the inhibitor with the weight loss technique. Tafel polarization results show that the extract acts as a mixed-type inhibitor. The Nyquist plots indicated decreasing double-layer capacitance and increasing charge transfer resistance on increasing JS concentration. The inhibition action occurred through the physical adsorption of the extract on the aluminum surface. The adsorption process was found to follow Langmuir adsorption isotherm. The formation of a protective film on the metal surface was confirmed by scanning electron microscopy.


2018 ◽  
Vol 65 (2) ◽  
pp. 176-189 ◽  
Author(s):  
Younes El Kacimi ◽  
Mouhsine Galai ◽  
Khaoula Alaoui ◽  
Rachid Touir ◽  
Mohamed Ebn Touhami

Purpose The purpose of this paper is to study the effect of silicon and phosphorus content in steel suitable for galvanizing on its corrosion and inhibitor adsorption processes in steels/cetyltrimethylammonium bromide combined and KI (mixture)/5.0 M hydrochloric acid systems has been studied in relation to the temperature using chemical (weight loss), Tafel polarization, electrochemical impedance spectroscopy (EIS), scanning electronic microscope (SEM) analysis and Optical 3D profilometry characterization. All the methods used are in reasonable agreement. The kinetic and thermodynamic parameters for each steels corrosion and inhibitor adsorption, respectively, were determined and discussed. Results show that the adsorption capacity for Steel Classes A and B are better than Steel Class C surfaces depending on their silicon and phosphorus content. Surface analyses via SEM and Optical 3D profilometry was used to investigate the morphology of the steels before and after immersion in 5.0 M HCl solution containing mixture. Surface analysis revealed improvement of corrosion resistance of Steels Classes A and B in the presence of mixture more than Classes C. It has been determined that the adsorbed protective film on the steels surface heterogeneity markedly depends on steels compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content. Design/methodology/approach The effect of silicon and phosphorus content in Steels Classes A, B and C on its corrosion and inhibitor mixture adsorption processes in 5.0 M HCl solution has been studied by weight loss, potentiodynamic polarization, EIS and surface analysis. Findings The inhibition efficiency of mixture follows the order: (Steel Class A) > (Steel Class B) > Steel Class C) and depends on their compositions in the absence of mixture according on their silicon and phosphorus content, that is, the corrosion rate increases with increasing of the silicon and phosphorus content. A potentiodynamic polarization measurement indicates that the mixture acts as mixed-type inhibitor without changing the mechanism of corrosion process for the three classes of mild steels. Originality/value Corrosion rate mild steels in 5.0 M HCl depends on their compositions in the absence of mixture according to their silicon and phosphorus content, that is, the corrosion rate increases with increasing silicon and phosphorus content. The adsorbed protective film on the steels surface heterogeneity markedly depends on steels class’s compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content.


Sign in / Sign up

Export Citation Format

Share Document