Development of semi-implicit midpoint and Romberg stress integration algorithms for single hardening soil constitutive models

2020 ◽  
Vol 37 (9) ◽  
pp. 3477-3503
Author(s):  
Divyanshu Kumar Lal ◽  
Arghya Das

Purpose Semi-implicit type cutting plane method (CPM) and fully implicit type closest point projection method (CPPM) are the two most widely used frameworks for numerical stress integration. CPM is simple, easy to implement and accurate up to first order. CPPM is unconditionally stable and accurate up to second order though the formulation is complex. Therefore, this study aims to develop a less complex and accurate stress integration method for complex constitutive models. Design/methodology/approach Two integration techniques are formulated using the midpoint and Romberg method by modifying CPM. The algorithms are implemented for three different classes of soil constitutive model. The efficiency of the algorithms is judged via stress point analysis and solving a boundary value problem. Findings Stress point analysis indicates that the proposed algorithms are stable even with a large step size. In addition, numerical analysis for solving boundary value problem demonstrates a significant reduction in central processing unit (CPU) time with the use of the semi-implicit-type midpoint algorithm. Originality/value Traditionally, midpoint and Romberg algorithms are formulated from explicit integration techniques, whereas the present study uses a semi-implicit approach to enhance stability. In addition, the proposed stress integration algorithms provide an efficient means to solve boundary value problems pertaining to geotechnical engineering.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anass Ourraoui ◽  
Abdesslem Ayoujil

PurposeIn this article, the authors discuss the existence and multiplicity of solutions for an anisotropic discrete boundary value problem in T-dimensional Hilbert space. The approach is based on variational methods especially on the three critical points theorem established by B. Ricceri.Design/methodology/approachThe approach is based on variational methods especially on the three critical points theorem established by B. Ricceri.FindingsThe authors study the existence of results for a discrete problem, with two boundary conditions type. Accurately, the authors have proved the existence of at least three solutions.Originality/valueAn other feature is that problem is with non-local term, which makes some difficulties in the proof of our results.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chein-Shan Liu ◽  
Jiang-Ren Chang

Purpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method. Design/methodology/approach The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula. Findings When the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions. Research limitations/implications Basically, the authors’ strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides. Practical implications Starting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied. Originality/value Through the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast.


2020 ◽  
Vol 30 (11) ◽  
pp. 4933-4943 ◽  
Author(s):  
Ji-Huan He

Purpose This paper aims to review some effective methods for fully fourth-order nonlinear integral boundary value problems with fractal derivatives. Design/methodology/approach Boundary value problems arise everywhere in engineering, hence two-scale thermodynamics and fractal calculus have been introduced. Some analytical methods are reviewed, mainly including the variational iteration method, the Ritz method, the homotopy perturbation method, the variational principle and the Taylor series method. An example is given to show the simple solution process and the high accuracy of the solution. Findings An elemental and heuristic explanation of fractal calculus is given, and the main solution process and merits of each reviewed method are elucidated. The fractal boundary value problem in a fractal space can be approximately converted into a classical one by the two-scale transform. Originality/value This paper can be served as a paradigm for various practical applications.


1997 ◽  
Vol 10 (2) ◽  
pp. 157-168
Author(s):  
S. K. Ntouyas ◽  
P. Ch. Tsamatos

In this paper we study the existence of solutions to initial and boundary value problems of partial functional differential equations via a fixed-point analysis approach. Using the topological transversality theorem we derive conditions under which an initial or a boundary value problem has a solution.


2019 ◽  
Vol 36 (2) ◽  
pp. 420-444 ◽  
Author(s):  
Lolugu Govindarao ◽  
Jugal Mohapatra

Purpose The purpose of this paper is to provide a robust second-order numerical scheme for singularly perturbed delay parabolic convection–diffusion initial boundary value problem. Design/methodology/approach For the parabolic convection-diffusion initial boundary value problem, the authors solve the problem numerically by discretizing the domain in the spatial direction using the Shishkin-type meshes (standard Shishkin mesh, Bakhvalov–Shishkin mesh) and in temporal direction using the uniform mesh. The time derivative is discretized by the implicit-trapezoidal scheme, and the spatial derivatives are discretized by the hybrid scheme, which is a combination of the midpoint upwind scheme and central difference scheme. Findings The authors find a parameter-uniform convergent scheme which is of second-order accurate globally with respect to space and time for the singularly perturbed delay parabolic convection–diffusion initial boundary value problem. Also, the Thomas algorithm is used which takes much less computational time. Originality/value A singularly perturbed delay parabolic convection–diffusion initial boundary value problem is considered. The solution of the problem possesses a regular boundary layer. The authors solve this problem numerically using a hybrid scheme. The method is parameter-uniform convergent and is of second order accurate globally with respect to space and time. Numerical results are carried out to verify the theoretical estimates.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelrachid El Amrouss ◽  
Omar Hammouti

PurposeThe purpose of this paper is the study of existence and multiplicity of solutions for a nonlinear discrete boundary value problems involving the p-laplacian.Design/methodology/approachThe approach is based on variational methods and critical point theory.FindingsTheorem 1.1. Theorem 1.2. Theorem 1.3. Theorem 1.4.Originality/valueThe paper is original and the authors think the results are new.


Sign in / Sign up

Export Citation Format

Share Document