An asymptotic-numerical comparative study for axisymmetric free surface liquid jet near and far from exit at high Reynolds number

2020 ◽  
Vol 30 (10) ◽  
pp. 4493-4527
Author(s):  
Yunpeng Wang ◽  
Roger E. Khayat

Purpose The purpose of this study is to examine theoretically the axisymmetric flow of a steady free-surface jet emerging from a tube for high inertia flow and moderate surface tension effect. Design/methodology/approach The method of matched asymptotic expansion is used to explore the rich dynamics near the exit where a stress singularity occurs. A boundary layer approach is also proposed to capture the flow further downstream where the free surface layer has grown significantly. Findings The jet is found to always contract near the tube exit. In contrast to existing numerical studies, the author explores the strength of upstream influence and the flow in the wall layer, resulting from jet contraction. This influence becomes particularly evident from the nonlinear pressure dependence on the upstream distance, as well as the pressure undershoot and overshoot at the exit for weak and strong gravity levels, respectively. The approach is validated against existing experimental and numerical data for the jet profile and centerline velocity where good agreement is obtained. Far from the exit, the author shows how the solution in the diffusive region can be matched to the inviscid far solution, providing the desired appropriate initial condition for the inviscid far flow solution. The location, at which the velocity becomes uniform across the jet, depends strongly on the gravity level and exhibits a non-monotonic behavior with respect to gravity and applied pressure gradient. The author finds that under weak gravity, surface tension has little influence on the final jet radius. The work is a crucial supplement to the existing numerical literature. Originality/value Given the presence of the stress singularity at the exit, the work constitutes a superior alternative to a computational approach where the singularity is typically and inaccurately smoothed over. In contrast, in the present study, the singularity is entirely circumvented. Moreover, the flow details are better elucidated, and the various scales involved in different regions are better identified.

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 180
Author(s):  
Roger E. Khayat ◽  
Mohammad Tanvir Hossain

The planar flow of a steady moving-wall free-surface jet is examined theoretically for moderate inertia and surface tension. The method of matched asymptotic expansion and singular perturbation is used to explore the rich dynamics near the stress singularity. A thin-film approach is also proposed to capture the flow further downstream where the flow becomes of the boundary-layer type. We exploit the similarity character of the flow to circumvent the presence of the singularity. The study is of close relevance to slot and blade coating. The jet is found to always contract near the channel exit, but presents a mild expansion further downstream for a thick coating film. We predict that separation occurs upstream of the exit for slot coating, essentially for any coating thickness near the moving substrate, and for a thin film near the die. For capillary number of order one, the jet profile is not affected by surface tension but the normal stress along the free surface exhibits a maximum that strengthens with surface tension. In contrast to existing numerical findings, we predict the existence of upstream influence as indicated by the nonlinear pressure dependence on upstream distance and the pressure undershoot (overshoot) in blade (slot) coating at the exit.


2016 ◽  
Vol 57 (4) ◽  
pp. 417-428
Author(s):  
G. C. HOCKING ◽  
H. H. N. NGUYEN ◽  
L. K. FORBES ◽  
T. E. STOKES

The steady, axisymmetric flow induced by a point sink (or source) submerged in an inviscid fluid of infinite depth is computed and the resulting deformation of the free surface is obtained. The effect of surface tension on the free surface is determined and is the new component of this work. The maximum Froude numbers at which steady solutions exist are computed. It is found that the determining factor in reaching the critical flow changes as more surface tension is included. If there is zero or a very small amount of surface tension, the limiting factor appears to be the formation of small wavelets on the free surface; but, as the surface tension increases, this is replaced by a tendency for the lowest point on the free surface to descend sharply as the Froude number is increased.


1998 ◽  
Vol 372 ◽  
pp. 273-300 ◽  
Author(s):  
O. E. JENSEN ◽  
D. HALPERN

The leading edge of a localized, insoluble surfactant monolayer, advancing under the action of surface-tension gradients over the free surface of a thin, viscous, fluid layer, behaves locally like a rigid plate. Since lubrication theory fails to capture the integrable stress singularity at the monolayer tip, so overestimating the monolayer length, we investigate the quasi-steady two-dimensional Stokes flow near the tip, assuming that surface tension or gravity keeps the free surface locally at. Wiener–Hopf and matched-eigenfunction methods are used to compute the ‘stick-slip’ flow when the singularity is present; a boundary-element method is used to explore the nonlinear regularizing effects of weak ‘contaminant’ surfactant or surface diffusion. In the limit in which gravity strongly suppresses film deformations, a spreading monolayer drives an unsteady return flow (governed by a nonlinear diffusion equation) beneath most of the monolayer, and a series of weak vortices in the fluid ahead of the tip. As contaminant or surface diffusion increase in strength, they smooth the tip singularity over short lengthscales, eliminate the local stress maximum and ultimately destroy the vortices. The theory is readily extended to cases in which the film deforms freely over long lengthscales. Limitations of conventional thin-film approximations are discussed.


2021 ◽  
pp. 110203
Author(s):  
Wen-Bin Liu ◽  
Dong-Jun Ma ◽  
Ming-Yu Zhang ◽  
An-Min He ◽  
Nan-Sheng Liu ◽  
...  

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Alex Doak ◽  
Jean-Marc Vanden-Broeck

AbstractThis paper concerns the flow of fluid exiting a two-dimensional pipe and impacting an infinite wedge. Where the flow leaves the pipe there is a free surface between the fluid and a passive gas. The model is a generalisation of both plane bubbles and flow impacting a flat plate. In the absence of gravity and surface tension, an exact free streamline solution is derived. We also construct two numerical schemes to compute solutions with the inclusion of surface tension and gravity. The first method involves mapping the flow to the lower half-plane, where an integral equation concerning only boundary values is derived. This integral equation is solved numerically. The second method involves conformally mapping the flow domain onto a unit disc in the s-plane. The unknowns are then expressed as a power series in s. The series is truncated, and the coefficients are solved numerically. The boundary integral method has the additional advantage that it allows for solutions with waves in the far-field, as discussed later. Good agreement between the two numerical methods and the exact free streamline solution provides a check on the numerical schemes.


2000 ◽  
Vol 406 ◽  
pp. 337-346 ◽  
Author(s):  
L. ENGEVIK

The instabilities of a free surface shear flow are considered, with special emphasis on the shear flow with the velocity profile U* = U*0sech2 (by*). This velocity profile, which is found to model very well the shear flow in the wake of a hydrofoil, has been focused on in previous studies, for instance by Dimas & Triantyfallou who made a purely numerical investigation of this problem, and by Longuet-Higgins who simplified the problem by approximating the velocity profile with a piecewise-linear profile to make it amenable to an analytical treatment. However, none has so far recognized that this problem in fact has a very simple solution which can be found analytically; that is, the stability boundaries, i.e. the boundaries between the stable and the unstable regions in the wavenumber (k)–Froude number (F)-plane, are given by simple algebraic equations in k and F. This applies also when surface tension is included. With no surface tension present there exist two distinct regimes of unstable waves for all values of the Froude number F > 0. If 0 < F [Lt ] 1, then one of the regimes is given by 0 < k < (1 − F2/6), the other by F−2 < k < 9F−2, which is a very extended region on the k-axis. When F [Gt ] 1 there is one small unstable region close to k = 0, i.e. 0 < k < 9/(4F2), the other unstable region being (3/2)1/2F−1 < k < 2 + 27/(8F2). When surface tension is included there may be one, two or even three distinct regimes of unstable modes depending on the value of the Froude number. For small F there is only one instability region, for intermediate values of F there are two regimes of unstable modes, and when F is large enough there are three distinct instability regions.


2005 ◽  
Vol 47 (2) ◽  
pp. 185-202 ◽  
Author(s):  
T. E. Stokes ◽  
G. C. Hocking ◽  
L. K. Forbes

AbstractThe unsteady axisymmetric withdrawal from a fluid with a free surface through a point sink is considered. Results both with and without surface tension are included and placed in context with previous work. The results indicate that there are two critical values of withdrawal rate at which the surface is drawn directly into the outlet, one after flow initiation and the other after the flow has been established. It is shown that the larger of these values corresponds to the point at which steady solutions no longer exist.


Sign in / Sign up

Export Citation Format

Share Document