Effect of tribological parameters on sliding wear and friction coefficient which relates to preload loss in tapered roller bearing
Purpose This paper aims to study the sliding wear and coefficient of friction (COF) using “ball on disc” tribometer. Discs of bearing steel were subjected to different tribological parameters such as heat treatment (through hardening and case hardening), sliding speed, sliding distance and micro-geometry of the functional ball and disc point contact. Results obtained from tribometer were correlated with the preload loss in tapered roller bearing. Preload loss is subjected to wear rate pattern with respect to the internal geometry and micro-geometry of functional surfaces of the tapered roller bearing, caused by internal resistance between roller large ends sliding against cone supporting face. This confirms the optimum geometry and physical/mechanical property of the tapered roller bearing, which makes the use of these bearings under the demanding application in the automotive industry such as differential gears and installation of pinions of differential gears in power transmissions or wheels. Design/methodology/approach The paper opted for an exploratory study using the design of experiments with full factorial method. The approach was to do ball on disc sliding wear test and correlate that sliding wear with preload loss in tapered roller bearing. Findings The paper provides the limit of preload loss in tapered roller bearing. Research limitations/implications Because of the chosen research approach, the research lacks the effect of environmental conditions such as temperature and relative humidity and lube film thickness effect on wear test. It also lacks the validation part with actual preload loss on tapered roller bearings. Above work is included in future scope of work. Practical implications This paper includes the recommendation for surface parameters which can increase the bearing life by reducing the preload loss in tapered roller bearing. Social implications This paper includes the recommendation for surface parameters for bearing manufacturing industries. Originality/value This paper provides the relation between sliding wear and preload loss in tapered roller bearing.