Design of logarithmic crowned roller for tapered roller bearings based on the elastohydrodynamic lubrication model

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongyu Duan ◽  
Qingtao Yu ◽  
Zhijian Wang

Purpose The purpose of this paper is to study the film-forming capacity of logarithmic crowned roller for tapered roller bearing (TRB) and to design a tapered roller profile based on an elastohydrodynamic lubrication model. Design/methodology/approach A coupled model, incorporating a quasi-static model of TRBs and an elastohydrodynamic lubrication model was developed to investigate the load distribution of TRB and to evaluate the lubrication state of tapered roller/raceway contact. Findings The model is verified with published literature results. Parametric analysis is conducted to investigate the effect of crown drop on azimuthal load distribution of the roller, film thickness and pressure distribution in the contact area. The result shows that crown drop has little influence on the azimuthal load distribution; also, the film thickness and the pressure distribution are asymmetric. When the tapered roller is designed and manufactured, the crown drop of the small end should be larger than that in the large end. Originality/value Precise roller profile design is conducive to improve the fatigue life of TRBs. Currently, most crown design methods neglect the influence of lubrication, which can lead to a non-suitable roller profile. Therefore, the present work is undertaken to optimize roller profiles based on lubrication theory.

1991 ◽  
Vol 113 (3) ◽  
pp. 590-597 ◽  
Author(s):  
R. S. Zhou ◽  
M. R. Hoeprich

An analytic tapered roller bearing torque model is presented along with laboratory test data. Initial results of this proposed model are favorable. An accurate general purpose torque prediction tool could be obtained by extending the concepts presented in conjunction with a more comprehensive analysis of actual bearing operating conditions. By using EHL (Elastohydrodynamic Lubrication) theory and micro-macro contact analysis, the bearing torque can be determined by predicting each torque component for each roller due to raceway rolling, raceway moments due to EHL pressure distribution, and frictional force of rib-roller end contact. The roughness effect of contact surfaces, effect of EHL film thickness parameter (the ratio of film thickness to composite surface roughness), and thermal EHL effects are also included. A bearing torque test rig, which can measure the torque of cup race, cone race, and rib separately, was built and used to provide test data. Good agreement between the experimentally measured bearing torques and the predictions of the new torque model has been obtained. This torque model will provide a greater fundamental understanding and is more versatile over a wide range of operating conditions.


2019 ◽  
Vol 71 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Ayush Jain ◽  
Abhishek Singh ◽  
Arendra Pal Singh

Purpose This paper aims to study the sliding wear and coefficient of friction (COF) using “ball on disc” tribometer. Discs of bearing steel were subjected to different tribological parameters such as heat treatment (through hardening and case hardening), sliding speed, sliding distance and micro-geometry of the functional ball and disc point contact. Results obtained from tribometer were correlated with the preload loss in tapered roller bearing. Preload loss is subjected to wear rate pattern with respect to the internal geometry and micro-geometry of functional surfaces of the tapered roller bearing, caused by internal resistance between roller large ends sliding against cone supporting face. This confirms the optimum geometry and physical/mechanical property of the tapered roller bearing, which makes the use of these bearings under the demanding application in the automotive industry such as differential gears and installation of pinions of differential gears in power transmissions or wheels. Design/methodology/approach The paper opted for an exploratory study using the design of experiments with full factorial method. The approach was to do ball on disc sliding wear test and correlate that sliding wear with preload loss in tapered roller bearing. Findings The paper provides the limit of preload loss in tapered roller bearing. Research limitations/implications Because of the chosen research approach, the research lacks the effect of environmental conditions such as temperature and relative humidity and lube film thickness effect on wear test. It also lacks the validation part with actual preload loss on tapered roller bearings. Above work is included in future scope of work. Practical implications This paper includes the recommendation for surface parameters which can increase the bearing life by reducing the preload loss in tapered roller bearing. Social implications This paper includes the recommendation for surface parameters for bearing manufacturing industries. Originality/value This paper provides the relation between sliding wear and preload loss in tapered roller bearing.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Abd Alsamieh

Purpose The purpose of this paper is to study the behavior of a single ridge passing through elastohydrodynamic lubrication of point contacts problem for different ridge shapes and sizes, including flat-top, triangular and cosine wave pattern to get an optimal ridge profile. Design/methodology/approach The time-dependent Reynolds’ equation is solved using Newton–Raphson technique. Several shapes of surface feature are simulated and the film thickness and pressure distribution are obtained at every time step by simultaneous solution of the Reynolds’ equation and film thickness equation, including elastic deformation. Film thickness and pressure distribution are chosen to be the criteria in the comparisons. Findings The geometrical characteristics of the ridge play an important role in the formation of lubricant film thickness profile and the pressure distribution through the contact zone. To minimize wear, friction and fatigue life, an optimal ridge profile should have smooth shape with small ridge size. Obtained results are compared with other published numerical results and show a good agreement. Originality/value The study evaluates the performance of different surface features of a single ridge with different shapes and sizes passing through elastohydrodynamic of point contact problem in relation to film thickness and pressure profile.


2018 ◽  
Vol 70 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Sier Deng ◽  
Jinfang Gu ◽  
Yongcun Cui ◽  
Wenhu Zhang

Purpose This study aims to analyze the roller dynamic characteristics and cage whirling of tapered roller bearing considering roller tilt and skew which provide a theoretical basis for the design and application of tapered roller bearing. Design/methodology/approach Based on rolling bearing dynamic analysis, the dynamic differential equations of tapered roller bearing are established. Fine integral method and predict correct Adams–Bashforth–Moulton multi-step method are used to solve the dynamic differential equations of tapered roller bearings. Findings Friction at the flange contact between roller and large flange is the chief factor of roller skew. In comparison to cone speed, axial loads have more visible effect on roller skew, and proper speed or axial load is beneficial to sustain cage motion and decrease cage instability. Under the combined effort of axial load and radial load, the distribution of roller skew is correlated to the roller-flange contact load. In addition, roller skew angle in loaded zone is larger than that in unloaded zone; hence, it is helpful for cage stability if an extent radial load is applied. The pocket clearance of cage has very small influence on roller skew; therefore, a reasonable pocket clearance is suggested to assure minimum instability of cage. Friction coefficient of flange contact has a large effect on roller skew, and cage whirl is found to demonstrate a circular orbit with increasing friction coefficient. Originality/value The dynamic differential equations of tapered roller bearing considering roller large end/inner ring back face rib contact under various lubrication states were established. The impact of flange friction working conditions and cage pocket clearance on cage instability and roller skew were focused on. It is the first time that the ratio of the standard deviation of the cage-center translational speed to its mean value is used to access the instability of cage in tapered roller bearing.


2018 ◽  
Vol 70 (1) ◽  
pp. 133-139
Author(s):  
Ye Zhou ◽  
Degong Chang ◽  
Songmei Li

Purpose This paper aims to improve the grease thermal elastohydrodynamic lubrication (TEHL) properties of the tripod sliding universal coupling (TSUC) under automotive practical conditions. For this purpose, the effect of effective radius was theoretically investigated. Design/methodology/approach Based on the simplified geometric model, the effect of effective radius on the pressure distribution, film thickness and temperature distribution of the TSUC was theoretically investigated using the multigrid and stepping methods. The TEHL properties were compared with the results obtained using the isothermal calculation method. Findings The results show that the thermal effect has a great impact on the film thickness and the pressure distribution of grease lubrication properties. Moreover, larger effective radius results in a wider but lower pressure distribution, a wider and thicker lubricating film and a lower temperature distribution. Originality/value The TSUC can be widely used in the front drive automotive transmission because it can transmit larger torque than before. The effect of effective radius on the thermal grease lubrication properties under automotive practical conditions provides a new direction for designing it.


2018 ◽  
Vol 70 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Zhenhua Zhang ◽  
Jiaxu Wang ◽  
Guangwu Zhou ◽  
Xin Pei

Purpose This paper aims to solve the lubrication failures in the turning arm bearing of RV reducer, give some help in perfecting the bearing structure design and provide theoretical basis for the reducer’s performance improvement. Design/methodology/approach The paper establishes a mixed lubrication analysis model to study performance parameters. According to the discretization of parameters and iteration of equations, numerical simulation and theoretical analysis are achieved in computational process. Findings Considering influences of contact load, real rough surface and realistic geometry of RV reducer turning arm roller bearing, the mixed lubrication analysis model is established to study the ratio of oil film thickness, pressure distribution and maximum von Mises stress in different speeds, temperatures and fillets. The results of mixed lubrication show that reasonable round corner modification, increase in temperature and speed, decrease of surface roughness and lubricant types can improve the lubrication performance. Originality/value The mixed lubrication analysis model is established to study the influences of contact load, real rough surface and realistic geometry of RV reducer turning arm roller bearing. Different speed, temperature, lubricant and fillet modification are also considered in the research to analyze oil film thickness, pressure distribution and maximum von Mises stress. These studies can optimize structural design of bearing and direct engineer operations.


2015 ◽  
Vol 9 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Xintao Xia ◽  
Shujing Dong ◽  
Liming Sun ◽  
Tianju Chen

Double-row tapered roller bearing 353112 is used in trucks, and the external load and pressure distribution of the bearing are calculated combining with the specific operating conditions. Tapered roller bearings typically employ roller profile modification to equalize the load distribution, minimizing the stress concentration at the roller ends. Doing FEA (finite element analysis) on the contact stress with the changing roller crowning between roller and races, the appropriate roller profile and the crown drop of roller can be achieved. Finally the best control equation of roller crowning is obtained. It has important guiding significance for the improvement of roller crowning design of truck hub bearings.


Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Brent M. Wilson ◽  
Kevin D. Cole ◽  
Lariza Navarro

Catastrophic bearing failure is a major concern for the railroad industry because it can lead to costly train stoppages and even derailments. Excessive heat buildup within the bearing is one of the main factors that can warn of impending failure. A question is often raised regarding the transfer of heat from a wheel during braking and whether this can lead to false setouts. Therefore, this work was motivated by the need to understand and quantify the heat transfer paths to the tapered roller bearing within the railroad wheel assembly when wheel heating occurs. A series of experiments and finite element (FE) analyses were conducted in order to identify the different heat transfer mechanisms, with emphasis on radiation. The experimental setup consisted of a train axle with two wheels and bearings pressed onto their respective journals. One of the wheels was heated using an electric tape placed around the outside of the rim. A total of 32 thermocouples scattered throughout the heated wheel, the axle, and the bearing circumference measured the temperature distribution within the assembly. In order to quantify the heat radiated to the bearing, a second set of experiments was developed; these included, in addition to the axle and the wheel pair, a parabolic reflector that blocked body-to-body radiation to the bearing. The appropriate boundary conditions including ambient temperature, emissivity, and convection coefficient estimates were measured or calculated from the aforementioned experiments. The FE thermal analysis of the wheel assembly was performed using the ALGOR™ software. Experimental temperature data along the radius of the heated wheel, the bearing circumference, and at selected locations on the axle were compared to the results of the FE model to verify its accuracy. The results indicate that the effect of thermal radiation from a hot wheel on the cup temperature of the adjacent bearing is minimal when the wheel tread temperature is at 135°C (275°F), and does not exceed 17°C (31°F) when the wheel tread is at 315°C (600°F).


Sign in / Sign up

Export Citation Format

Share Document