A path planning method of anti-jamming ability improvement for autonomous vehicle navigating in off-road environments

Author(s):  
Jiajia Chen ◽  
Wuhua Jiang ◽  
Pan Zhao ◽  
Jinfang Hu

Purpose Navigating in off-road environments is a huge challenge for autonomous vehicles, due to the safety requirement, the effects of noises and non-holonomic constraints of vehicle. This paper aims to describe a path planning method based on fuzzy support vector machine (FSVM) and general regression neural network (GRNN) that is able to provide a solution path for the autonomous vehicle navigating in the off-road environments. Design/methodology/approach The authors decompose the path planning problem into three steps. In the first step, A* algorithm is applied to obtain the positive and negative samples. In the second step, the authors use a learning approach based on radial basis function kernel FSVM to maximize the safety margin for driving, and the fuzzy membership is designed based on GRNN which can help to resolve the problem that the traditional path planning method is easily influenced by noises or outliers. In the third step, the Bezier interpolation algorithm is used to smooth the path. The simulations are designed to verify the parameters of the path planning algorithm. Findings The method is implemented on autonomous vehicle and verified against many outdoor scenes. Road test indicates that the proposed method can produce a flexible, smooth and safe path with good anti-jamming performance. Originality/value This paper applied a new path planning method based on GRNN-FSVM for autonomous vehicle navigating in off-road environments. GRNN-FSVM can reduce the effects of outliers and maximize the safety margin for driving, the generated path is smooth and safe, while satisfying the constraint of vehicle kinematic.

Author(s):  
Nurul Saliha Amani Ibrahim ◽  
Faiz Asraf Saparudin

The path planning problem has been a crucial topic to be solved in autonomous vehicles. Path planning consists operations to find the route that passes through all of the points of interest in a given area. Several algorithms have been proposed and outlined in the various literature for the path planning of autonomous vehicle especially for unmanned aerial vehicles (UAV). The algorithms are not guaranteed to give full performance in each path planning cases but each one of them has their own specification which makes them suitable in sophisticated situation. This review paper evaluates several possible different path planning approaches of UAVs in terms optimal path, probabilistic completeness and computation time along with their application in specific problems.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2244
Author(s):  
S. M. Yang ◽  
Y. A. Lin

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional–integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.


2021 ◽  
Vol 11 (11) ◽  
pp. 5057
Author(s):  
Wan-Yu Yu ◽  
Xiao-Qiang Huang ◽  
Hung-Yi Luo ◽  
Von-Wun Soo ◽  
Yung-Lung Lee

The autonomous vehicle technology has recently been developed rapidly in a wide variety of applications. However, coordinating a team of autonomous vehicles to complete missions in an unknown and changing environment has been a challenging and complicated task. We modify the consensus-based auction algorithm (CBAA) so that it can dynamically reallocate tasks among autonomous vehicles that can flexibly find a path to reach multiple dynamic targets while avoiding unexpected obstacles and staying close as a group as possible simultaneously. We propose the core algorithms and simulate with many scenarios empirically to illustrate how the proposed framework works. Specifically, we show that how autonomous vehicles could reallocate the tasks among each other in finding dynamically changing paths while certain targets may appear and disappear during the movement mission. We also discuss some challenging problems as a future work.


2022 ◽  
pp. 1-12
Author(s):  
Yang Li ◽  
Simeng Chen ◽  
Ke Bai ◽  
Hao Wang

Safety is the premise of the stable and sustainable development of the chemical industry, safety accidents will not only cause casualties and economic losses, but also cause panic among workers and nearby residents. Robot safety inspection based on the fire risk level in a chemical industrial park can effectively reduce process accident losses and can even prevent accidents. The optimal inspection path is an important support for patrol efficiency, therefore, in this study, the fire risk level of each location to be inspected, which is obtained by the electrostatic discharge algorithm (ESDA)–nonparallel support vector machine evaluation model, is combined with the optimisation of the inspection path; that is, the fire risk level is used to guide the inspection path planning. The inspection path planning problem is a typical travelling salesman problem (TSP). The discrete ESDA (DESDA), based on the ESDA, is proposed. In view of the shortcomings of the long convergence time and ease of falling into the local optimum of the DESDA, further improvements are proposed in the form of the IDESDA, in which the greedy algorithm is used for the initial population, the 2-opt algorithm is applied to generate new solutions, and the elite set is joined to provide the best segment for jumping out of the local optimum. In the experiments, 11 public calculation examples were used to verify the algorithm performance. The IDESDA exhibited higher accuracy and better stability when solving the TSP. Its application to chemical industrial parks can effectively solve the path optimisation problem of patrol robots.


2019 ◽  
Vol 2 (2) ◽  
pp. 67-77
Author(s):  
Wei Xue ◽  
Rencheng Zheng ◽  
Bo Yang ◽  
Zheng Wang ◽  
Tsutomu Kaizuka ◽  
...  

Purpose Automated driving systems (ADSs) are being developed to avoid human error and improve driving safety. However, limited focus has been given to the fallback behavior of automated vehicles, which act as a fail-safe mechanism to deal with safety issues resulting from sensor failure. Therefore, this study aims to establish a fallback control approach aimed at driving an automated vehicle to a safe parking lane under perceptive sensor malfunction. Design/methodology/approach Owing to an undetected area resulting from a front sensor malfunction, the proposed ADS first creates virtual vehicles to replace existing vehicles in the undetected area. Afterward, the virtual vehicles are assumed to perform the most hazardous driving behavior toward the host vehicle; an adaptive model predictive control algorithm is then presented to optimize the control task during the fallback procedure, avoiding potential collisions with surrounding vehicles. This fallback approach was tested in typical cases related to car-following and lane changes. Findings It is confirmed that the host vehicle avoid collision with the surrounding vehicles during the fallback procedure, revealing that the proposed method is effective for the test scenarios. Originality/value This study presents a model for the path-planning problem regarding an automated vehicle under perceptive sensor failure, and it proposes an original path-planning approach based on virtual vehicle scheme to improve the safety of an automated vehicle during a fallback procedure. This proposal gives a different view on the fallback safety problem from the normal strategy, in which the mode is switched to manual if a driver is available or the vehicle is instantly stopped.


2016 ◽  
Vol 36 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Nianyin Zeng ◽  
Hong Zhang ◽  
Yanping Chen ◽  
Binqiang Chen ◽  
Yurong Liu

Purpose This paper aims to present a novel particle swarm optimization (PSO) based on a non-homogeneous Markov chain and differential evolution (DE) for path planning of intelligent robot when having obstacles in the environment. Design/methodology/approach The three-dimensional path surface of the intelligent robot is decomposed into a two-dimensional plane and the height information in z axis. Then, the grid method is exploited for the environment modeling problem. After that, a recently proposed switching local evolutionary PSO (SLEPSO) based on non-homogeneous Markov chain and DE is analyzed for the path planning problem. The velocity updating equation of the presented SLEPSO algorithm jumps from one mode to another based on the non-homogeneous Markov chain, which can overcome the contradiction between local and global search. In addition, DE mutation and crossover operations can enhance the capability of finding a better global best particle in the PSO method. Findings Finally, the SLEPSO algorithm is successfully applied to the path planning in two different environments. Comparing with some well-known PSO algorithms, the experiment results show the feasibility and effectiveness of the presented method. Originality/value Therefore, this can provide a new method for the area of path planning of intelligent robot.


Subject China's policies to develop the autonomous vehicle sector. Significance Chinese policymakers believe the size of their domestic market will give China’s vehicle makers the scale to lead the world in autonomous cars. The National Development and Reform Commission expects that 50% of new vehicles sold in China by 2020 will be ‘smart cars’, that is, with partial or fully autonomous functions. Impacts Policies do not explicitly favour fleet vehicles over private cars, but fleet vehicles are likely to lead adoption. Self-driving fleet services are a future way to provide mobility for a growing elderly population. Regardless of international concerns about protectionism, all levels of government will use preferential procurement to support the sector. China's civilian autonomous vehicle sector will benefit from dual-use technology developed by the military.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Jianjun Ni ◽  
Liuying Wu ◽  
Pengfei Shi ◽  
Simon X. Yang

Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shicai Ji ◽  
Ying Peng ◽  
Hongjia Zhang ◽  
Shengbo Wu

One of the major challenges that connected autonomous vehicles (CAVs) are facing today is driving in urban environments. To achieve this goal, CAVs need to have the ability to understand the crossing intention of pedestrians. However, for autonomous vehicles, it is quite challenging to understand pedestrians’ crossing intentions. Because the pedestrian is a very complex individual, their intention to cross the street is affected by the weather, the surrounding traffic environment, and even his own emotions. If the established street crossing intention recognition model cannot be updated in real time according to the diversity of samples, the efficiency of human-machine interaction and the interaction safety will be greatly affected. Based on the above problems, this paper established a pedestrian crossing intention model based on the online semisupervised support vector machine algorithm (OS3VM). In order to verify the effectiveness of the model, this paper collects a large amount of pedestrian crossing data and vehicle movement data based on laser scanner, and determines the main feature components of the model input through feature extraction and principal component analysis (PCA). The comparison results of recognition accuracy of SVM, S3VM, and OS3VM indicate that the proposed OS3VM model exhibits a better ability to recognize pedestrian crossing intentions than the SVM and S3VM models, and the accuracy achieves 94.83%. Therefore, the OS3VM model can reduce the number of labeled samples for training the classifier and improve the recognition accuracy.


Sign in / Sign up

Export Citation Format

Share Document