scholarly journals Global–local supply chain configurations for different production strategies: a comparison between traditional and customized productions

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Laura Macchion ◽  
Rosanna Fornasiero

PurposeSupply chain (SC) configuration has gained increased acceptance as an important issue when evaluating new customization possibilities and this evidence has contributed to the strengthening of the debate between global vs local production locations. This work contributes in enrichment of this topic by studying how local or global SC location decisions influence performances by considering a SC point of view, in terms of cost and time, in traditional and customized productions.Design/methodology/approachA discrete event simulation approach, based on experimentation through executable configurations, was used to evaluate different SC scenarios for customized as well as traditional products within the footwear industry.FindingsThe results indicated that to identify proper SC locations, existing trade-offs between the time and cost performances should be studied, avoiding the evaluation of a single performance independently and, instead, adopting a complete SC point of view while considering these performances.Research limitations/implicationsThis evidence has contributed to the reinforcement of the discussion between far-shore destinations vs near-shore production locations. Further studies are encouraged to adopt the present model, in which addition of other variables such as specific manufacturing competences to differentiate suppliers, both local and global suppliers, or the possibility of realizing special types of product customization required by final consumers can be done.Practical implicationsThe paper contributes to the academic and practitioners' debate by proposing a systemic approach to assess SCs’ performances in customized contexts and to compare them to traditional collections. Results indicate that cost and time performance must find a balance that does not necessarily correspond to an exclusively local or global production.Originality/valueThis work contributes to the SC configuration issue by considering the trade-off between efficiency and effectiveness (i.e. SC costs and SC times) for customized productions by reviving and enriching it with an SC perspective in customization contexts.

2020 ◽  
Vol 31 (2) ◽  
pp. 291-311
Author(s):  
Paul Childerhouse ◽  
Mohammed Al Aqqad ◽  
Quan Zhou ◽  
Carel Bezuidenhout

PurposeThe objective of this research is to model supply chain network resilience for low frequency high impact disruptions. The outputs are aimed at providing policy and practitioner guidance on ways to enhance supply chain resilience.Design/methodology/approachThe research models the resilience of New Zealand's log export logistical network. A two-tier approach is developed; linear programming is used to model the aggregate-level resilience of the nation's ports, then discrete event simulation is used to evaluate operational constraints and validate the capacity of operational flows from forests to ports.FindingsThe synthesis of linear programming and discrete event simulation provide a holistic approach to evaluate supply chain resilience and enhance operational efficiency. Strategically increasing redundancy can be complimented with operational flexibility to enhance network resilience in the long term.Research limitations/implicationsThe two-tier modelling approach has only been applied to New Zealand's log export supply chains, so further applications are needed to insure reliability. The requirement for large quantities of empirical data relating to operational flows limited the simulation component to a single regionPractical implicationsNew Zealand's log export supply chain has low resilience; in most cases the closure of a port significantly constrains export capacity. Strategic selection of location and transportation mode by foresters and log exporters can significantly enhance the resilience of their supply chains.Originality/valueThe use of a two-tiered analytical approach enhances validity as each level's limitations and assumptions are addressed when combined with one another. Prior predominantly theoretical research in the field is validated by the empirical investigation of supply chain resilience.


2014 ◽  
Vol 21 (3) ◽  
pp. 386-411 ◽  
Author(s):  
Navin K. Dev ◽  
Ravi Shankar ◽  
Prasanta Kumar Dey

Purpose – Short product life cycle and/or mass customization necessitate reconfiguration of operational enablers of supply chain (SC) from time to time in order to harness high levels of performance. The purpose of this paper is to identify the key operational enablers under stochastic environment on which practitioner should focus while reconfiguring a SC network. Design/methodology/approach – The paper used interpretive structural modeling (ISM) approach that presents a hierarchy-based model and the mutual relationships among the enablers. The contextual relationship needed for developing structural self-interaction matrix (SSIM) among various enablers is realized by conducting experiments through simulation of a hypothetical SC network. Findings – The research identifies various operational enablers having a high driving power towards assumed performance measures. In this regard, these enablers require maximum attention and of strategic importance while reconfiguring SC. Practical implications – ISM provides a useful tool to the SC managers to strategically adopt and focus on the key enablers which have comparatively greater potential in enhancing the SC performance under given operational settings. Originality/value – The present research realizes the importance of SC flexibility under the premise of reconfiguration of the operational units in order to harness high value of SC performance. Given the resulting digraph through ISM, the decision maker can focus the key enablers for effective reconfiguration. The study is one of the first efforts that develop contextual relations among operational enablers for SSIM matrix through integration of discrete event simulation to ISM.


2021 ◽  
Vol 31 (4) ◽  
pp. 1-31
Author(s):  
Navonil Mustafee ◽  
Korina Katsaliaki ◽  
Simon J. E. Taylor

The field of Supply Chain Management (SCM ) is experiencing rapid strides in the use of Industry 4.0 technologies and the conceptualization of new supply chain configurations for online retail, sustainable and green supply chains, and the Circular Economy. Thus, there is an increasing impetus to use simulation techniques such as discrete-event simulation, agent-based simulation, and hybrid simulation in the context of SCM. In conventional supply chain simulation, the underlying constituents of the system like manufacturing, distribution, retail, and logistics processes are often modelled and executed as a single model. Unlike this conventional approach, a distributed supply chain simulation (DSCS) enables the coordinated execution of simulation models using specialist software. To understand the current state-of-the-art of DSCS, this paper presents a methodological review and categorization of literature in DSCS using a framework-based approach. Through a study of over 130 articles, we report on the motivation for using DSCS, the modelling techniques, the underlying distributed computing technologies and middleware, its advantages and a future agenda, and also limitations and trade-offs that may be associated with this approach. The increasing adoption of technologies like Internet-of-Things and Cloud Computing will ensure the availability of both data and models for distributed decision-making, which is likely to enable data-driven DSCS of the future. This review aims to inform organizational stakeholders, simulation researchers and practitioners, distributed systems developers and software vendors, as to the current state-of-the art of DSCS, and which will inform the development of future DSCS using new applied computing approaches.


Author(s):  
Christoph Strauss ◽  
Günter Bildstein ◽  
Jana Efe ◽  
Theo Flacher ◽  
Karen Hofmann ◽  
...  

Many studies in research deal with optimizing emergency medical services (EMS) on both the operational and the strategic level. It is the purpose of this method-oriented article to explain the major features of “rule-based discrete event simulation” (rule-based DES), which we developed independently in Germany and Switzerland. Our rule-based DES addresses questions concerning the location and relocation of ambulances, dispatching and routing policies, and EMS interplay with other players in prehospital care. We highlight three typical use cases from a practitioner’s perspective and go into different countries’ peculiarities. We show how research results are applied to EMS and healthcare organizations to simulate and optimize specific regions in Germany and Switzerland with their strong federal structures. The rule-based DES serves as basis for decision support to improve regional emergency services’ efficiency without increasing cost. Finally, all simulation-based methods suggest normative solutions and optimize EMS’ performance within given healthcare system structures. We argue that interactions between EMS, emergency departments, and public healthcare agencies are crucial to further improving effectiveness, efficiency, and quality.


2015 ◽  
Vol 26 (5) ◽  
pp. 632-659 ◽  
Author(s):  
Abdullah A Alabdulkarim ◽  
Peter Ball ◽  
Ashutosh Tiwari

Purpose – Asset management has recently gained significance due to emerging business models such as Product Service Systems where the sale of asset use, rather than the sale of the asset itself, is applied. This leaves the responsibility of the maintenance tasks to fall on the shoulders of the manufacturer/supplier to provide high asset availability. The use of asset monitoring assists in providing high availability but the level of monitoring and maintenance needs to be assessed for cost effectiveness. There is a lack of available tools and understanding of their value in assessing monitoring levels. The paper aims to discuss these issues. Design/methodology/approach – This research aims to develop a dynamic modelling approach using Discrete Event Simulation (DES) to assess such maintenance systems in order to provide a better understanding of the behaviour of complex maintenance operations. Interviews were conducted and literature was analysed to gather modelling requirements. Generic models were created, followed by simulation models, to examine how maintenance operation systems behave regarding different levels of asset monitoring. Findings – This research indicates that DES discerns varying levels of complexity of maintenance operations but that more sophisticated asset monitoring levels will not necessarily result in a higher asset performance. The paper shows that it is possible to assess the impact of monitoring levels as well as make other changes to system operation that may be more or less effective. Practical implications – The proposed tool supports the maintenance operations decision makers to select the appropriate asset monitoring level that suits their operational needs. Originality/value – A novel DES approach was developed to assess asset monitoring levels for maintenance operations. In applying this quantitative approach, it was demonstrated that higher asset monitoring levels do not necessarily result in higher asset availability. The work provides a means of evaluating the constraints in the system that an asset is part of rather than focusing on the asset in isolation.


2018 ◽  
Vol 24 (7) ◽  
pp. 1178-1192 ◽  
Author(s):  
Siavash H. Khajavi ◽  
Jan Holmström ◽  
Jouni Partanen

PurposeInnovative startups have begun a trend using laser sintering (LS) technology patents expiration, namely, by introducing LS additive manufacturing (AM) machines that can overcome utilization barriers, such as the costliness of machines and productivity limitation. The recent rise of this trend has led the authors to investigate this new class of machines in novel settings, including hub configuration. There are various supply chain configurations to supply spare parts in industrial operations. This paper aims to explore the promise of a production configuration that combines the benefits of centralized production with the flexibility of local manufacturing without the huge costs related to it.Design/methodology/approachThis study quantitatively examines the feasibility of different AM-enabled spare parts supply chain configurations. Using cost data extracted from a case study, three scenarios per AM machine technology are modeled and compared.FindingsResults suggest that hub production configuration depending on the utilized AM machines can provide economic efficiency and effectiveness to reduce equipment downtime. While previous studies have suggested the need for AM machines with efficiency for single part production for a distributed supply chain, the findings in this research illustrate the positive relationship between multi-part production capability and the feasibility of a hub manufacturing configuration establishment.Originality/valueThis study explores the promise of a production configuration that combines the benefits of centralized production with the flexibility of local manufacturing without the huge costs related to it. Although the existing body of knowledge contains research on production decentralization, research on various levels of decentralization is lacking. Using a real-world case study, this study aims to compare the feasibility of different levels of decentralization for AM-enabled spare parts supply chains.


2017 ◽  
Vol 117 (10) ◽  
pp. 2468-2484 ◽  
Author(s):  
Xu Chen ◽  
Xiaojun Wang

Purpose In the era of climate change, industrial organizations are under increasing pressure from consumers and regulators to reduce greenhouse gas emissions. The purpose of this paper is to examine the effectiveness of product mix as a strategy to deliver the low carbon supply chain under the cap-and-trade policy. Design/methodology/approach The authors incorporate the cap-and-trade policy into the green product mix decision models by using game-theoretic approach and compare these decisions in a decentralized model and a centralized model, respectively. The research explores potential behavioral changes under the cap-and-trade in the context of a two-echelon supply chain. Findings The analysis results show that the channel structure has significant impact on both economic and environmental performances. An integrated supply chain generates more profits. In contrast, a decentralized supply chain has lower carbon emissions. The cap-and-trade policy makes a different impact on the economic and environmental performances of the supply chain. Balancing the trade-offs is critical to ensure the long-term sustainability. Originality/value The research offers many interesting observations with respect to the effect of product mix strategy on operational decisions and the trade-offs between costs and carbon emissions under the cap-and-trade policy. The insights derived from the analysis not only help firms to make important operational and strategic decisions to reduce carbon emissions while maintaining their economic competitiveness, but also make meaningful contribution to governments’ policy making for carbon emissions control.


2021 ◽  
pp. 80-94
Author(s):  
Khadija Ouazzani-Touhami ◽  
◽  
Mohammed EL Arass ◽  
Nissrine Souissi

This paper investigates the potential of discrete event simulation for the analysis and evaluation of public strategies and policies and discusses the opportunities offered by the use of a simulation project lifecycle. Following this cycle, we evaluate a public policy use case, the voluntary departure operation initiated in Morocco in 2005, and analyses the success rate of this operation, as well as its impact on the Moroccan pension fund, and this for the period from 2005 to 2025. The results of this simulation highlighted, as already indicated in the Court of Auditors' reports, the irrelevance of this operation, particularly from a financial point of view.


2016 ◽  
Vol 7 (1) ◽  
pp. 35-61 ◽  
Author(s):  
Stephan J. de Jong ◽  
Wouter W.A. Beelaerts van Blokland

Purpose – Implementation of lean manufacturing is currently performed in the production industry; however, for the airline maintenance service industry, it is still in its infancy. Indicators such as work in process, cycle time, on-time performance and inventory are useful indicators to measure lean implementation; however, a financial economic perspective taking fixed assets into consideration is still missing. Hence, the purpose of this paper is to propose a method to measure lean implementation from a fixed asset perspective for this type of industry. With the indicators, continuous improvement scenarios can be explored by value stream discrete event simulation. Design/methodology/approach – From literature, indicators regarding asset specificity to measure lean implementation are found. These indicators are analysed by a linear least square method to know if variables are interrelated to form a preliminary model. The indicators are tested by value stream-based discrete event simulation regarding continuous improvement scenarios. Findings – With the new found lean transaction cost efficiency indicators, namely, turnover, gross margin and inventory pre-fixed asset (T/FA, GM/FA and I/FA, respectively), it is possible to measure operation performance from an asset specificity perspective under the influence of lean implementation. Secondly, the results of implementing continuous improvement scenarios are measured with the new indicators by a discrete event simulation. Research limitations/implications – This research is limited to the airline maintenance, repair and overhaul (MRO) service industry regarding component repair. Further research is necessary to test the indicators regarding other airline MRO service companies and other sectors of complex service industries like health care. Practical implications – The lean transaction cost efficiency model provides the capability for a maintenance service company to simulate the effects of process improvements on operation performance for service-based companies prior to implementation. Social/implications – Simulation of a Greenfield process can involve employees with possible changes in processes. This approach supports the adoption of anticipated changes. Originality/value – The found indicators form a preliminary model, which contributes to the usage and linkage of theories on lean manufacturing and transaction cost theory – asset specificity.


Sign in / Sign up

Export Citation Format

Share Document